AWMF Leitlinien-Register Nr. 003/001  Klasse S3

S3-Leitlinie

Prophylaxe der venösen Thromboembolie (VTE)

2. komplett überarbeitete Auflage,
Stand: 15.10.2015
Impressum

Autoren:
Prof. Dr. A. Encke, Prof. Dr. S. Haas, Prof. Dr. I. Kopp
Prof. Dr. H.-H. Abholz
Prof. Dr. C. Bode
Prof. Dr. F. Bootz
Prof. Dr. H. C. Diener
Dr. S. Eggeling
Dr. M. Eikermann
Dr. H. Gerlach
Prof. Dr. W. Gogarten
Prof. Dr. A. Greinacher
Prof. Dr. V. Hach-Wunderle
Prof. Dr. H. Heidrich
Prof. Dr. U. Kneser
Prof. Dr. R. Krauspe
Dr. C.M. Krüger
Prof. Dr. P. Kujath
Prof. Dr. J. Kussmann
Dipl. Ges.Ök. T. Mathes
Prof. Dr. E. Muhl
Prof. Dr. U. Nowak-Göttl
Dr. R. Pauschert
PD Dr. Ch. Protzel
Prof. Dr. E. Rabe
Prof. Dr. H. Riess
Prof. Dr. F.-C. Rieß
Prof. Dr. U. Rolle
Prof. Dr. S. Schellong
Prof. Dr. T. Schmitz-Rixen
Prof Dr. K. Schwerdtfeger
Prof. Dr. E. Solomayer
Prof. Dr. M. Spannagl
Prof. Dr. K. Stürmer
Prof. Dr. L. Swoboda
RA Prof. Dr. Dr. K. Ulsenheimer
Dr. T. von Haussen
Prof. Dr. C. Waydhas
PD Dr. M. Weigl

Kontakt:
AWMF-Institut für Medizinisches Wissensmanagement
Karl-von-Frisch-Str. 1
35041 Marburg
e-mail: imwi@awmf.org

Hinweis:
Bitte beachten Sie, dass nur die unter http://www.awmf.org/leitlinien/detail/ll/003-001.html enthaltenen Dokumente gültig sind.
Beteiligte Fachgesellschaften und Organisationen
# Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Abschnitt</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Impressum</strong></td>
</tr>
<tr>
<td><strong>Präambel</strong></td>
</tr>
<tr>
<td>Anwendungshinweise, Geltungsbereich und Zweck der Leitlinie</td>
</tr>
<tr>
<td>Ziele der Leitlinie</td>
</tr>
<tr>
<td>Die Leitlinie nimmt insbesondere zu folgenden Fragen Stellung:</td>
</tr>
<tr>
<td><strong>1 Methodik</strong></td>
</tr>
<tr>
<td>Zusammensetzung der Leitliniengruppe, Beteiligung von Interessengruppen</td>
</tr>
<tr>
<td>Recherche und Auswahl der wissenschaftlichen Belege (Evidenzbasierung)</td>
</tr>
<tr>
<td>Formulierung der Empfehlungen und Konsensusfindung</td>
</tr>
<tr>
<td>Planung der Evaluierung: Vorschläge für Qualitätsindikatoren</td>
</tr>
<tr>
<td>Externe Begutachtung und Verabschiedung</td>
</tr>
<tr>
<td>Finanzierung der Leitlinie und Darlegung möglicher Interessenskonflikte</td>
</tr>
<tr>
<td>Gültigkeitsdauer und Aktualisierungsverfahren</td>
</tr>
<tr>
<td><strong>2 Allgemeine Empfehlungen</strong></td>
</tr>
<tr>
<td>2.1 Notwendigkeit der VTE-Prophylaxe</td>
</tr>
<tr>
<td>2.2 Bedeutung von Risikofaktoren</td>
</tr>
<tr>
<td>2.3 Prinzipien der VTE-Prophylaxe</td>
</tr>
<tr>
<td>2.3.1 Allgemeine Basismaßnahmen</td>
</tr>
<tr>
<td>2.3.2 Labordiagnostik zur Risikoeinschätzung</td>
</tr>
<tr>
<td>2.3.3 Einteilung in Risikogruppen</td>
</tr>
<tr>
<td>2.3.4 Umfang der VTE-Prophylaxe nach Risikogruppen</td>
</tr>
<tr>
<td>2.4 Physikalische Maßnahmen zur VTE-Prophylaxe</td>
</tr>
<tr>
<td>2.4.1 Physikalische Maßnahmen</td>
</tr>
<tr>
<td>2.4.2 Vena-cava-Filter</td>
</tr>
<tr>
<td>2.5 Medikamentöse VTE-Prophylaxe</td>
</tr>
<tr>
<td>2.5.1 Arzneimittel zur medikamentösen VTE-Prophylaxe</td>
</tr>
<tr>
<td>2.5.2 Heparine</td>
</tr>
<tr>
<td>2.5.3 Danaparoid</td>
</tr>
<tr>
<td>2.5.4 Pentasaccharid: Fondaparinux</td>
</tr>
<tr>
<td>2.5.5 Nicht-Vitamin-K-abhängige orale Faktor Xa-Inhibitoren</td>
</tr>
<tr>
<td>2.5.6 Parenterale Thrombininhibitoren: Argatroban</td>
</tr>
<tr>
<td>2.5.7 Orale Thrombininhibitoren: Dabigatranetexilat</td>
</tr>
<tr>
<td>2.5.8 Vitamin K Antagonisten (Kumarine)</td>
</tr>
<tr>
<td>2.6 Nebenwirkungen und Anwendungseinschränkungen der medikamentösen VTE-Prophylaxe</td>
</tr>
<tr>
<td>2.6.1 Blutungskomplikationen bei medikamentöser VTE-Prophylaxe</td>
</tr>
</tbody>
</table>
2.6.2 Heparininduzierte Thrombozytopenie (HIT) .......................................... 42
2.6.3 Osteoporose / Osteopenie................................................................. 44

2.7 Beginn und Dauer der medikamentösen VTE-Prophylaxe.................. 44
  2.7.1 Beginn der medikamentösen VTE-Prophylaxe............................... 44
  2.7.2 Dauer der medikamentösen VTE-Prophylaxe ............................... 45

2.8 Medikamentöse VTE-Prophylaxe und rückenmarknahe Anästhesie .... 46

3 Spezielle Empfehlungen .............................................................................. 49
  3.1 Operative Medizin.............................................................................. 49
    3.1.1 Eingriffe im Kopf- und Halsbereich ............................................ 49
    3.1.2 Neurochirurgische Eingriffe ......................................................... 49
    3.1.3 Herz-, thorax- und gefäßchirurgische Eingriffe ......................... 53
    3.1.4 Eingriffe im Bauch- oder Beckenbereich .................................. 58
    3.1.5 Operationen und Verletzungen an Gelenken, Knochen und
        Weichteilen der oberen Extremität .............................................. 64
    3.1.6 Operationen und Verletzungen an Gelenken, Knochen und
        Weichteilen der unteren Extremität ........................................... 65
    3.1.7 Operationen und Verletzungen an der Wirbelsäule, Polytrauma,
        Verbrennungen ............................................................................. 78
  3.2 Innere Medizin/Neurologie ................................................................. 86
    3.2.1 Akute internistische Erkrankungen ............................................. 86
    3.2.2 Maligne Erkrankungen (nicht-operative Behandlung) ................ 87
    3.2.3 Schlaganfall .................................................................................. 90
  3.3 Intensivmedizin .................................................................................. 91
  3.4 Geburtshilfe und Gynäkologie.......................................................... 95
    3.4.1 Geburtshilfe ............................................................................... 95
    3.4.2 Gynäkologische Eingriffe ............................................................ 99
  3.5 Pädiatrie und Neonatologie ............................................................... 102
    3.5.1 Operative Medizin....................................................................... 103
    3.5.2 Innere Medizin ............................................................................ 104
  3.6 Urologie ........................................................................................... 104
  3.7 Besonderheiten der VTE-Prophylaxe in der ambulanten Medizin...... 106
    3.7.1 Patienten, die aus dem Krankenhaus in die ambulante Versorgung
        entlassen werden ........................................................................... 107
    3.7.2 Patienten, die akut erkranken, aber nicht stationär aufgenommen
        werden ............................................................................................ 108
    3.7.3 Immobilisation ohne akute Erkrankung ..................................... 108
    3.7.4 Vorübergehende Immobilisierung nicht erkrankter Personen .... 109
    3.7.5 Anwendungshinweise zur medikamentösen VTE-Prophylaxe in der
        ambulanten Medizin ...................................................................... 109
  3.8 Aufklärung des Patienten zur VTE-Prophylaxe .................................. 111
3.9 Qualitätsziele und klinische Messgrößen (Qualitätsindikatoren)........ 113

4 Evidenztabellen zum speziellen Teil.......................................................... 115

4.1 Operative Medizin/Trauma................................................................. 115
  4.1.1 Eingriffe im Kopf- und Halsbereich.............................................. 115
  4.1.2 Neurochirurgische Eingriffe....................................................... 115
  4.1.3 Herz-, thorax- und gefäßchirurgische Eingriffe............................. 116
  4.1.4 Eingriffe im Bauch- oder Beckenbereich .................................. 118
  4.1.5 Operationen und Verletzungen an Gelenken, Knochen und
       Weichteilen der oberen Extremität ............................................. 122
  4.1.6 Operationen und Verletzungen an Gelenken, Knochen und
       Weichteilen der unteren Extremität .......................................... 122
  4.1.7 Eingriffe und Verletzungen an der Wirbelsäule, Polytrauma,
       Verbrennungen.................................................................................. 133

4.2 Innere Medizin/Neurologie............................................................... 137
  4.2.1 Akute internistische Erkrankungen.............................................. 137
  4.2.2 Maligne Erkrankungen (nicht-operative Therapie) ..................... 139
  4.2.3 Schlaganfall.................................................................................. 139

4.3 Intensivmedizin .................................................................................. 140

4.4 Geburtshilfe und Gynäkologie.......................................................... 141

4.5 Pädiatrie und Neonatologie.............................................................. 143

4.6 Urologie............................................................................................. 143

4.7 Evidenztabellen Addendum 2010 zu Dabigatranetexilat und
       Rivaroxaban bei elektivem Hüft- und Kniegelenkersatz ............... 145

4.8 Evidenztabellen Aktualisierung 2015................................................ 146

5 Anhang .................................................................................................. 184

6 Literatur............................................................................................... 186
Präambel


Grundlage waren eine an ein externes, unabhängiges Institut in Auftrag gegebene systematische Recherche und methodische Bewertung zwischenzeitlich publizierter Studien, Beratungen innerhalb der Steuergruppe und zwei Konsensuskonferenzen der gesamten Leitliniengruppe.

Anwendungshinweise, Geltungsbereich und Zweck der Leitlinie

Die Leitlinie besteht aus folgenden Dokumenten:

- **Langversion** mit Empfehlungstexten und der diesen zugrunde liegenden wissenschaftlichen Evidenz sowie Hintergrundinformationen
- **Leitlinienreport** mit ergänzenden Angaben zur Methodik
- **Kurzversion** mit den wichtigsten Empfehlungen und Tabellen

Alle Dokumente zur Leitlinie sind im Internet frei verfügbar (http://www.awmf.org/leitlinien/detail/ll/003-001.html).

Die Leitlinie bezieht sich auf Patienten jeglichen Alters der operativen und nichtoperativen Medizin, die bedingt durch ihre Erkrankung oder eine Intervention ein Risiko für VTE haben. Auch die Besonderheiten in der Schwangerschaft und im Wochenbett werden in der Leitlinie berücksichtigt. Die Leitlinie ist nicht anwendbar für
S3-Leitlinie Prophylaxe der venösen Thromboembolie (VTE)
2. komplett überarbeitete Auflage, Stand: 15.10.2015


Sämtliche Leitlinien der wissenschaftlichen medizinischen Fachgesellschaften sind für Ärzte rechtlich nicht bindend und haben daher weder haftungsbegründende noch haftungsbefreiende Wirkung. Was im juristischen Sinne den ärztlichen Standard in der konkreten Behandlung eines Patienten darstellt, kann nur im Einzelfall entschieden werden.

Ziele der Leitlinie

Die Leitlinie nimmt insbesondere zu folgenden Fragen Stellung:
- Welche VTE-Risikofaktoren sind relevant im Hinblick auf die Notwendigkeit prophylaktischer Maßnahmen?
- Ist vor Indikationsstellung zu einer medikamentösen VTE-Prophylaxe eine labor-analytische Diagnostik sinnvoll?
- Welche Patienten profitieren von einer VTE-Prophylaxe?
• Welche Methoden der VTE-Prophylaxe sind auf der Basis angemessener Daten zu Nutzen und Risiken zu empfehlen?

• Welchen Stellenwert haben physikalische und medikamentöse Maßnahmen der VTE-Prophylaxe?

• Über welchen Zeitraum sollte eine medikamentöse VTE-Prophylaxe durchgeführt werden?

• Wie ist beim Verdacht einer Heparin-induzierten Thrombozytopenie (HIT) vorzugehen?

• Gibt es Besonderheiten der Durchführung der VTE-Prophylaxe in unterschiedlichen Versorgungsbereichen (ambulant/stationär/fachspezifisch)?

• Welche Messgrößen/Qualitätsindikatoren sind geeignet für die Beurteilung der Angemessenheit der medikamentösen VTE-Prophylaxe?
1 Methodik


Zusammensetzung der Leitliniengruppe, Beteiligung von Interessen- gruppen

Die Organisation und Leitung der Leitlinienaktualisierung übernahmen:

- Prof. Dr. A. Encke (Koordinator)
- Prof. Dr. S. Haas (Koordinatorin)
- Prof. Dr. I. Kopp (Moderation, Methodische Begleitung, Leitliniensekretariat)
- Dr. M. Eikermann (Methodische Begleitung, Evidenzrecherche und -bewertung)


Zur Beratung in juristischen Fragen wurde Prof. Dr. Dr. K. Ulsenheimer, München, als externer Experte in die Leitliniengruppe berufen. Die Arzneimittelkommission der Deutschen Ärzteschaft übernahm die externe Begutachtung und mandatierte hierfür Prof. Dr. A. Greinacher, Greifswald.

Zur Überarbeitung des Kapitels Qualität sindikatoren wurde Dr. M. Nothacker MPH, AWMF-Institut für Medizinisches Wissensmanagement, als Methodikerin hinzugezogen.

Eine Übersicht der Zusammensetzung der Leitliniengruppe ist in Tabelle I dargestellt.
<table>
<thead>
<tr>
<th>Beteiligte Fachgesellschaften / Organisationen</th>
<th>Vertreter / Experte</th>
</tr>
</thead>
</table>
| AWMF (Koordination, Moderation)                                                                               | Prof. Dr. A. Encke  
|                                                                                                                | Prof. Dr. S. Haas  
|                                                                                                                | Prof. Dr. I. Kopp  |
| Arzneimittelkommission der deutschen Ärzteschaft (externe Begutachtung)                                       | Prof. Dr. A. Greinacher                                                                                                                                 |
| Deutsche Dermatologische Gesellschaft                                                                         | Prof. Dr. E. Rabe  
| Deutsche Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen                             | Prof. Dr. U. Kneser                                                                                                                                     |
| Deutsche Gesellschaft für Allgemein- und Familienmedizin                                                       | Prof. Dr. H.-H. Abholz                                                                                                                                 |
| Deutsche Gesellschaft für Allgemein- und Viszeralchirurgie                                                     | Prof. Dr. P. Kujath                                                                                                                                 |
| Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin                                                | Prof. Dr. W. Gogarten                                                                                                                                 |
| Deutsche Gesellschaft für Angiologie                                                                           | Prof. Dr. S. Schellong                                                                                                                                 |
| Deutsche Gesellschaft für Chirurgie                                                                            | Dr. C.M.Kräger                                                                                                                                 |
| Deutsche Gesellschaft für Gefässchirurgie                                                                      | Prof. Dr. T. Schmitz-Rixen  
|                                                                                                                | N.N.                                                                                                                                               |
| Deutsche Gesellschaft für Gynäkologie und Geburtshilfe                                                          | Prof. Dr. E. Solomayer                                                                                                                                 |
| Deutsche Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Halschirurgi                                                                                     | Prof. Dr. F. Bootz                                                                                                                                 |
| Deutsche Gesellschaft für Hämatologie und Onkologie                                                              | Prof. Dr. H. Riess                                                                                                                                 |
| Deutsche Gesellschaft für Innere Medizin                                                                       | Prof. Dr. V. Hach-Wunderle                                                                                                                                 |
| Deutsche Gesellschaft für Kardiologie                                                                          | Prof. Dr. C. Bode                                                                                                                                 |
| Deutsche Gesellschaft für Kinder- und Jugendmedizin                                                            | Prof. Dr. U. Nowak-Göttl                                                                                                                                 |
| Deutsche Gesellschaft für Kinderchirurgie                                                                      | Prof. Dr. U. Rolle                                                                                                                                 |
| Deutsche Gesellschaft für Mund-, Kiefer- und Gesichtschirurgie                                                | Dr. T. von Haussen                                                                                                                                 |
| Deutsche Gesellschaft für Neurochirurgie                                                                       | Prof. Dr. K. Schwerdtfeger                                                                                                                                 |
| Deutsche Gesellschaft für Neurologie                                                                           | Prof. Dr. H. C. Diener                                                                                                                                 |
| Deutsche Gesellschaft für Orthopädie und Orthopädische Chirurgie                                               | Prof. Dr. R. Krauspe  
|                                                                                                                | Dr. R. Pauschert                                                                                                                                 |
| Deutsche Gesellschaft für Phlebologie                                                                          | Dr. H. Gerlach                                                                                                                                 |
| Deutsche Gesellschaft für Physikalische Medizin und Rehabilitation                                              | PD Dr. M Weigl                                                                                                                                 |
| Deutsche Gesellschaft für Thorax-, Herz- und Gefässchirurgie                                                  | Prof. Dr. F.-C. Rieß  
|                                                                                                                | Prof. Dr. L. Swoboda  
|                                                                                                                | Dr. S. Eggeling                                                                                                                                 |
| Deutsche Gesellschaft für Thoraxchirurgie                                                                      |                                                                                                                                                 |
| Deutsche Gesellschaft für Unfallchirurgie                                                                       | Prof. Dr. C. Waydhas  
|                                                                                                                | Prof. Dr. K. Stürmer                                                                                                                                 |
| Deutsche Gesellschaft für Urologie                                                                              | PD Dr. Ch. Protzel                                                                                                                                 |
| Deutsche Interdisziplinäre Vereinigung für Intensiv- und Notfallmedizin                                         | Prof. Dr. E. Muhl                                                                                                                                 |
| Gemeinschaft Fachärztlicher Berufsverbände                                                                     | Prof. Dr. J. Kussmann                                                                                                                                 |
| Gesellschaft für Thrombose- und Hämostaseforschung                                                            | Prof. Dr. M. Spannagl                                                                                                                                 |
| Juristische Beratung                                                                                           | RA Prof. Dr. Dr. K. Ulsemheimer                                                                                                                                 |
| Methodiker (Literaturrecherche und -Bewertung, Qualitätsindikatoren)                                           | Dr. M. Eikermann  
|                                                                                                                | Dipl. Ges.Ök. T. Mathes  
|                                                                                                                | Dr. M. Nothacker MPH                                                                                                                                 |
Recherche und Auswahl der wissenschaftlichen Belege (Evidenzbasiierung)


Deutschland bis Januar 2008 nicht zugelassenen Medikamenten ausgeschlossen (für die S3-Leitlinie 2009).


Am 25.03.2010 erfolgte eine Aktualisierungsrecherche in Medline (via PubMed) zur Bewertung zwischenzeitlich neu zugelassener Faktor Xa- und Thrombininhibitoren (Rivaroxaban, Dabigatranetexilat) im Rahmen eines Addendum (publiziert 2010). Aus 173 Treffern wurden 13 RCT eingeschlossen [20-32], analog der beschriebenen Weise bewertet und 2 Evidenztabellen ergänzt. Zusätzlich wurden 2 Technologiebewertungen zu diesen Substanzen berücksichtigt [33; 34].


7) Hinweise auf andere Quellen möglicher Verzerrungen der Studienergebnisse („other sources of Bias“), [42] Die Studienbewertung erfolgte streng nach Anweisung der Cochrane Collaboration [42].

Für die zusammenfassende Darstellung in den Evidenztabellen werden neben den Kernmerkmalen jeder Studie (Patienten, Intervention, Kontrollintervention, Ergebnis) die hinsichtlich der 7 Kriterien auffälligen Bewertungen genannt. Hinsichtlich der Analyseverfahren und zur näheren Beleuchtung des Kriteriums „incomplete outcome data“ werden 4 Kollektive unterschieden: Intention-to-Treat Analyse (ITT, die Anzahl der analysierten Patienten entspricht exakt der Anzahl der randomisierten Patienten), Modified-ITT (Analyse aller Patienten, die mindestens 1x behandelt wurden; bei RCT, die chirurgisch behandelte Patienten betrachteten, mussten die Patienten zudem tatsächlich operiert worden sein), As-treated: (Therapiewechsler wurden entsprechend der Behandlung, die sie tatsächlich erhalten haben, ausgewertet), Per-Protocol (PP, Analysen, in denen Patienten auf Grund von jeglichen Protokollverletzung ausgeschlossen wurden. Falls in den Publikationen angegeben, wurde die Definition von Protokollabweichungen aufgeführt. Die Zahl der Studienabbrüchen (Drop-outs) wird gesondert pro Gruppe (Studienarm) aufgeführt.

Tabelle II gibt eine Übersicht über alle zu den spezifischen Erkankungen oder Operationen erstellten Evidenztabellen.
### Tabelle II: Übersicht über die Evidenztabellen zur VTE-Prophylaxe

<table>
<thead>
<tr>
<th>Klinisches Gebiet</th>
<th>Physikalische Maßnahmen vs. keine Prophylaxe</th>
<th>Physikalische Maßnahmen vs. medikamentöse Prophylaxe</th>
<th>Heparine (NMH oder UFH) vs. keine Prophylaxe</th>
<th>NMH vs. UFH</th>
<th>Andere Arten der medikamentösen Prophylaxe (außer Heparine)</th>
<th>Sonstige Vergleichs (insbes. zur Dauer der Prophylaxe)</th>
<th>Aktualisierung 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Operative Medizin / Trauma</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eingriffe im Kopf-/Halsbereich</td>
<td>Evidenztabelle 1</td>
<td>Evidenztabelle 2</td>
<td>Evidenztabelle 3</td>
<td>Evidenztabelle 4</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 77</td>
</tr>
<tr>
<td>Neurochirurgische Eingriffe</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Herz-, thorax und gefäßchirurgische Eingriffe</td>
<td>Evidenztabelle 5</td>
<td>-</td>
<td>Evidenztabelle 6</td>
<td>Evidenztabelle 7</td>
<td>-</td>
<td>Evidenztabelle 8</td>
<td></td>
</tr>
<tr>
<td>Eingriffe und Verletzungen an der oberen Extremität</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Eingriffe im Bauch- oder Beckenbereich</td>
<td>Evidenztabelle 9</td>
<td>Evidenztabelle 10</td>
<td>Evidenztabelle 11</td>
<td>Evidenztabelle 12</td>
<td>Evidenztabelle 13</td>
<td>Evidenztabelle 14</td>
<td>Evidenztabelle 15</td>
</tr>
<tr>
<td>Allgemein- und Viszeralchirurgie „(General Surgery“)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 78</td>
</tr>
<tr>
<td>Kniegelenkendoprothetik, kniegelenksnahe Frakturen und Osteotomien</td>
<td>Evidenztabelle 26</td>
<td>Evidenztabelle 27</td>
<td>Evidenztabelle 28</td>
<td>Evidenztabelle 29</td>
<td>Evidenztabelle 30</td>
<td>Evidenztabelle 31</td>
<td>Evidenztabelle 32</td>
</tr>
<tr>
<td>Hüft- und Kniegelenkendoprothetik gemischt</td>
<td>Evidenztabelle 32</td>
<td>Evidenztabelle 33</td>
<td>Evidenztabelle 34</td>
<td>Evidenztabelle 35</td>
<td>Evidenztabelle 36</td>
<td>Evidenztabelle 37</td>
<td>Evidenztabelle 38</td>
</tr>
<tr>
<td>Arthroskopische Eingriffe an der unteren Extremität</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 39</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 40</td>
</tr>
<tr>
<td>Immobilisation an der unteren Extremität</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 41</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 42</td>
</tr>
<tr>
<td>Eingriffe an der Wirbelsäule</td>
<td>Evidenztabelle 43</td>
<td>-</td>
<td>Evidenztabelle 44</td>
<td>Evidenztabelle 45</td>
<td>-</td>
<td>Evidenztabelle 46</td>
<td></td>
</tr>
<tr>
<td>Klinisches Gebiet</td>
<td>Physikalische Maßnahmen vs. keine Prophylaxe</td>
<td>Physikalische Maßnahmen vs. medikamentöse Prophylaxe</td>
<td>Heparine (NMH oder UFH) vs. keine Prophylaxe</td>
<td>NMH vs. UFH</td>
<td>Andere Arten der medikamentösen Prophylaxe (außer Heparine)</td>
<td>Sonstige Vergleiche (insbes. zur Dauer der Prophylaxe)</td>
<td>Aktualisierung 2015</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-----------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td>-------------</td>
<td>-------------------------------------------------------------</td>
<td>-----------------------------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Verletzungen der Wirbelsäule</td>
<td>Evidenztabelle 47</td>
<td>-</td>
<td>Evidenztabelle 48</td>
<td>Evidenztabelle 49</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 82</td>
</tr>
<tr>
<td>Polytrauma / Verbrennung</td>
<td>Evidenztabelle 50</td>
<td>Evidenztabelle 51</td>
<td>Evidenztabelle 52</td>
<td>Evidenztabelle 53</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Verletzungen der Wirbelsäulenverletzungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Evidenztabelle 82</td>
<td></td>
</tr>
<tr>
<td>Innere Medizin / Neurologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akute internistische Erkrankung</td>
<td>Evidenztabelle 54</td>
<td>-</td>
<td>Evidenztabelle 55</td>
<td>Evidenztabelle 56</td>
<td>Evidenztabelle 57</td>
<td>Evidenztabelle 83</td>
<td></td>
</tr>
<tr>
<td>Tabelle Maligne Erkrankung</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 84</td>
</tr>
<tr>
<td>Schlaganfall / Lähmung</td>
<td>Evidenztabelle 60</td>
<td>Evidenztabelle 61</td>
<td>Evidenztabelle 62</td>
<td>Evidenztabelle 63</td>
<td>Evidenztabelle 64</td>
<td>Evidenztabelle 85</td>
<td></td>
</tr>
<tr>
<td>Intensivmedizin</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 66</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 86</td>
</tr>
<tr>
<td>Geburtshilfe / Gynäkologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geburtshilfe</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Gynäkologische Eingriffe</td>
<td>Evidenztabelle 67</td>
<td>Evidenztabelle 68</td>
<td>Evidenztabelle 69</td>
<td>Evidenztabelle 70</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 87</td>
</tr>
<tr>
<td>Kaiserschnitt</td>
<td>-</td>
<td>-</td>
<td>Evidenztabelle 71</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pädiatrie / Neonatologie</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Urologie</td>
<td>-</td>
<td>Evidenztabelle 72</td>
<td>Evidenztabelle 73</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Formulierung der Empfehlungen und Konsensusfindung

Bei der Darstellung der Leitlinieninhalte wird zwischen Kernaussagen/Schlüsselempfehlungen (fett geschrieben, im Textkasten), deren Herleitung (Fließtext, Quellenangaben) und der Darstellung der Primärliteratur (Evidenztabellen) unterschieden.


<table>
<thead>
<tr>
<th>Studienqualität</th>
<th>Evidenzstärke</th>
<th>Empfehlung</th>
<th>Beschreibung</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematische Übersichtsarbe, mit oder ohne Metaanalyse oder RCT (Nutzen einer Therapie), Validierende Kohortenstudien (Testgüte diagnostischer Verfahren) von hoher Qualität</td>
<td>hoch</td>
<td>&quot;soll&quot;</td>
<td>Starke Empfehlung</td>
<td>⬆️</td>
</tr>
<tr>
<td>RCT bzw. Kohortenstudien von eingeschränkter Qualität</td>
<td>moderat</td>
<td>&quot;sollte&quot;</td>
<td>Empfehlung</td>
<td>⬆️</td>
</tr>
<tr>
<td>RCT bzw. Kohortenstudien von schlechter Qualität, alle anderen Studiendesigns</td>
<td>niedrig/ sehr niedrig</td>
<td>&quot;kann“</td>
<td>Empfehlung offen</td>
<td>⇐️</td>
</tr>
</tbody>
</table>

Zusätzlich zu den so graduierten Empfehlungen hat die Leitliniengruppe Empfehlungen zu Fragestellungen ausgesprochen, die nicht durch die systematische Literaturrecherche und -bewertung beantwortbar waren, die aber im Konsens der Experten „gute klinische Praxis“ reflektieren. Diese Empfehlungen sind ausgewiesen als „Expertenkonsens“.

Die Festlegung der Empfehlungsgrade erfolgte im Rahmen formaler Konsensusverfahren der Leitliniengruppe. Dabei wurden neben der Güte der zugrundeliegenden Evidenz auch folgende Kriterien explizit berücksichtigt [2; 43; 44]:

- Konsistenz der Studienergebnisse
- Klinische Relevanz der Endpunkte (Outcomes) und Effektstärken
- Nutzen-Schaden-Verhältnis
- Ethische, rechtliche, ökonomische Erwägungen
- Patientenpräferenzen
- Anwendbarkeit auf die Patientenzielgruppe, Umsetzbarkeit in der Versorgungsrealität.
Bei der Diskussion der Empfehlungen wurden zu einer klinischen Situation (z.B. gynäkologische Eingriffe) auch stets andere Situationen mit vergleichbarem VTE-Risiko (z.B. abdominalchirurgische Eingriffe) mitbetrachtet, um die Studienevidenz in der Gesamtschau betrachten zu können ("Prinzip der übertragbaren Evidenz").

**Auf Grund der genannten Konsensusaspekte wurde in Einzelfällen ein im Vergleich zur Evidenzstärke höherer oder niedrigerer Empfehlungsgrad ausgesprochen.** Die jeweiligen Begründungen für solche Abweichungen sind dem Hintergrundtext zu den Empfehlungen zu entnehmen.

Für die Konsensfindung wurde die Technik des Nominalen Gruppenprozesses eingesetzt (nach [45]).

Der Ablauf erfolgte in 6 Schritten:

- Stille Durchsicht des Leitlinienmanuskripts bzw. der vorgeschlagenen Empfehlungen;
- Gelegenheit zu Notizen zu den Kernaussagen, Schlüsselempfehlungen und der vorgeschlagenen Graduierung;
- Registrierung der Stellungnahmen und Alternativvorschläge aller Teilnehmer zu allen Aussagen und Empfehlungen im Einzelumlaufverfahren durch die Moderatorin, dabei Rednerbeiträge nur zur Klarstellung; Projektion per Beamer;
- Vorherabstimmung aller Empfehlungen und Empfehlungsgrade sowie der genannten Alternativen;
- Diskussion der Punkte, für die im ersten Durchgang kein Konsens erzielt werden konnte;
- Endgültige Abstimmung.

Alle Empfehlungen wurden im "starken Konsens" (Zustimmung von > 95% der Teilnehmer) oder im Konsens (Zustimmung von > 75% der Teilnehmer) verabschiedet. Für Bereiche, in denen kein Konsens erzielt werden konnte, konnten die unterschiedlichen Positionen im Kapiteltext dargelegt werden.

**Planung der Evaluierung: Vorschläge für Qualitätsindikatoren**

Im Zuge der Entwicklung der S3-Leitlinie (2009) wurde eine Liste von Qualitätsindikatoren vorgeschlagen, die zur Evaluierung der Umsetzung der Leitlinie in Klinik und Praxis, von Auswirkungen der Leitlinienanwendung auf die Versorgungsqualität sowie zur Identifikation von Verbesserungspotentialen sowohl für die Patientenversorgung als auch für die Fortschreibung der Leitlinie dienen sollte. Ihre Erarbeitung erfolgte nach der sog. RAND/UCLA-Methode mit Konsentierung im Rahmen eines zweistufigen Delphiverfahrens [46]. Als Grundlage dienten Empfehlungen, die starken Konsens (≥ 95% Zustimmung) und einen hohen Empfehlungsgrad (★★★★) aufwiesen sowie internationale Quellen [47].

Für die vorliegende Aktualisierung der Leitlinie (publiziert 2015) wurden alle vorge-
schlagenen Qualitätsindikatoren durch zwei unabhängige Methodiker in Hinblick auf folgende Ausschlusskriterien begutachtet:

A1: Es besteht kein relevantes Verbesserungspotenzial in der Versorgung
A2: Eine (technische) Messbarkeit ist nicht gegeben
A3: Andere (z.B. Dopplung des Qualitätsindikators aus 2 oder mehreren Empfehlungen)


**Externe Begutachtung und Verabschiedung**


**Finanzierung der Leitlinie und Darlegung möglicher Interessenskonflikte**


Dem Risiko von Verzerrungen der Leitlinieninhalte durch etwaige Interessenkonflikte wurde entgegengewirkt durch die pluralistische Zusammensetzung der Leitliniengruppe, die Evidenzaufbereitung durch ein unabhängiges Institut, den Einsatz einer formalen Konsensustechnik mit unabhängiger Moderation sowie die externe Begutachtung.

Den Autoren und Teilnehmern am Konsensusverfahren ist sehr zu danken für ihre ausschließlich ehrenamtliche Arbeit

**Gültigkeitsdauer und Aktualisierungsverfahren**

### Tabelle IV: Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Vollständiger Begriff</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCP</td>
<td>American College of Chest Physicians</td>
<td>niedermolekulares Heparin</td>
</tr>
<tr>
<td>ÄZQ</td>
<td>Ärztliches Zentrum für Qualität in der Medizin</td>
<td>Nuclear Magnetic Resonance (Kernspintomographie)</td>
</tr>
<tr>
<td>ASCO</td>
<td>American Society of Clinical Oncology</td>
<td>Nicht-Vitamin-K abhängige orale Antikoagulanzien (=DOAK, Direkte orale Antikoagulanzien)</td>
</tr>
<tr>
<td>ASS</td>
<td>Acetylsalicylsäure</td>
<td>Negative predictive value (negativ prädiktiver Wert)</td>
</tr>
<tr>
<td>AWMF</td>
<td>Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften</td>
<td>ns nicht signifikant</td>
</tr>
<tr>
<td>aXaU</td>
<td>anti-factor X-activated Units (anti-Faktor-Xa Einheiten)</td>
<td>OECD Organisation for Economic Co-Operation and Development</td>
</tr>
<tr>
<td>Chir.</td>
<td>Chirurgie, chirurgisch</td>
<td>OP Operation</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
<td>OR Odds Ratio (Chancenverhältnis)</td>
</tr>
<tr>
<td>CVI</td>
<td>Chronische venöse Insuffizienz</td>
<td>Pat. Patienten</td>
</tr>
<tr>
<td>DELBI</td>
<td>Deutsches Leitlinien-Bewertungs-Instrument</td>
<td>pleth plethysmographisch</td>
</tr>
<tr>
<td>DHE</td>
<td>Dihydroergotamin</td>
<td>p.o. per os</td>
</tr>
<tr>
<td>DOAK</td>
<td>Siehe NOAK</td>
<td>PPSB Prothrombinkonzentrat; Blutprodukt, in dem die folgenden Vitamin-K-abhängigen Gerinnungsfaktoren konzentriert sind: Faktor II (Prothrombin), Faktor VII (Prokonvertin), Faktor X (Tuart-Prower-Faktor), Faktor IX (antihämophiler Faktor B)</td>
</tr>
<tr>
<td>duplex</td>
<td>duplexsonographisch</td>
<td>PPV Positive predictive value (positiv prädiktiver Wert)</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii (und andere)</td>
<td>pRCT pseudorandomized controlled trial</td>
</tr>
<tr>
<td>ESC</td>
<td>European Society of Cardiology</td>
<td>RAND/ UCLA Research and Development Corporation / University of California, Los Angeles</td>
</tr>
<tr>
<td>HIT</td>
<td>Heparin-induzierte Thrombozytopenie</td>
<td>RCOG Royal College of Obstetricians and Gynaecologists</td>
</tr>
<tr>
<td>INR</td>
<td>International Normalized Ratio</td>
<td>RCT-studien randomized controlled trial (randomisiert kontrollierte Studie), Plural: RCTs</td>
</tr>
<tr>
<td>IPD</td>
<td>Individuelle Patienten-Daten</td>
<td>RFUT radio-fibrinogen uptake test (Radio- Fibrinogen-Aufnahme-Test)</td>
</tr>
<tr>
<td>IPK</td>
<td>Intermittierende pneumatische Kompression</td>
<td>RR Relatives Risiko</td>
</tr>
<tr>
<td>ISS</td>
<td>Injury Severity Score</td>
<td>s.c. subkutan</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention-to-treat</td>
<td>Sens. Sensitivität</td>
</tr>
<tr>
<td>IU</td>
<td>International Unit</td>
<td>SFAR Société Francaise d´Anesthésie et de Réanimation</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenös</td>
<td>SIGN Scottish Intercollegiate Guidelines Network</td>
</tr>
<tr>
<td>k.A.</td>
<td>keine Angaben</td>
<td>sono sonographisch (nicht näher spezifiziert)</td>
</tr>
<tr>
<td>KG</td>
<td>Krankengymnastik</td>
<td>Spez. Spezifität</td>
</tr>
<tr>
<td>KI</td>
<td>Konfidenzintervall</td>
<td>Thx Thorax</td>
</tr>
<tr>
<td>kompress</td>
<td>kompressionssonographisch</td>
<td>TVT Tiefe Venenthrombose</td>
</tr>
<tr>
<td>LE</td>
<td>Lungenembolie</td>
<td>UAW Unerwünschte Arzneimittelwirkung(en)</td>
</tr>
<tr>
<td>LL</td>
<td>Leitlinie</td>
<td>UFH Unfraktioniertes Heparin</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Heading</td>
<td>Visz. Viszeral</td>
</tr>
<tr>
<td>MTPS</td>
<td>medizinische Thromboseprophylaxe-estrümpfe</td>
<td>VKA Vitamin K-Antagonisten</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
<td>VTE venöse Thromboembolie</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institutes for Health and Clinical Excellence (England)</td>
<td></td>
</tr>
</tbody>
</table>
2 Allgemeine Empfehlungen

2.1 Notwendigkeit der VTE-Prophylaxe

Bei allen Patienten mit operativen Eingriffen, Verletzungen oder akuten Erkrankungen soll das Risiko venöser Thromboembolien bedacht werden. Die Indikationsstellung zur VTE-Prophylaxe soll individuell und risikoadaptiert erfolgen.

In der Allgemeinbevölkerung liegt die jährliche Inzidenz symptomatischer TVT bei 90 bis 130 auf 100.000 Einwohner (Tabelle V). Dies entspricht im Mittel 0,1% und variiert in Abhängigkeit von Definition, Alters- und Geschlechtsverteilung, ethnischer Zugehörigkeit und dem Vorhandensein variabler Risikofaktoren.

Tabelle V: Inzidenz von symptomatischen tiefen Venenthrombosen in der Allgemeinbevölkerung

<table>
<thead>
<tr>
<th>Autor, Jahr</th>
<th>Studienkollektiv</th>
<th>Studiendesign</th>
<th>Ergebnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glynn et al, 2007 [49]</td>
<td>39876 Frauen (&gt;45 J.)</td>
<td>Randomisierte, kontrollierte Studie</td>
<td>Jährliche TVT/LE-Rate gesamt 0,12%</td>
</tr>
<tr>
<td>Naess et al., 2007 [50]</td>
<td>94194 erwachsene Norweger</td>
<td>Populationsbasierte, retrospektive Kohortenstudie</td>
<td>Jährliche TVT-Rate gesamt 0,093%, jährliche LE-Rate gesamt 0,050%,</td>
</tr>
<tr>
<td>White et al., 2005 [51]</td>
<td>23,3 Mio. erwachsene Kalifornier, davon 55% Kaukasier</td>
<td>Populationsbasierte, retrospektive Kohortenstudie</td>
<td>Jährliche standardisierte TVT-Rate insgesamt 0,093%, für Kaukasier 0,103%</td>
</tr>
<tr>
<td>Oger et al., 2000 [52]</td>
<td>342000 erwachsene Franzosen</td>
<td>Populationsbasierte, retrospektive Kohortenstudie</td>
<td>Jährliche TVT/LE-Rate gesamt 0,124%</td>
</tr>
<tr>
<td>Silverstein et al., 1998 [53]</td>
<td>106470 erwachsene Amerikaner, Zeitraum 1966 bis 1990</td>
<td>Populationsbasierte, retrospektive Kohortenstudie</td>
<td>Jährliche standarisierte TVT/LE-Rate gesamt 0,117%</td>
</tr>
<tr>
<td>Nordström et al., 1992 [54]</td>
<td>366 Schweden, Zeitraum 1987</td>
<td>Populationsbasierte, prospektive Kohortenstudie</td>
<td>TVT-Rate gesamt 0,16%</td>
</tr>
<tr>
<td>Anderson et al., 1991 [55]</td>
<td>379953 Amerikaner (Massachusetts), Zeitraum 1985 bis 1986</td>
<td>Populationsbasierte, prospektive Kohortenstudie</td>
<td>Jährliche TVT/LE-Rate gesamt 0,107%</td>
</tr>
</tbody>
</table>

Tabelle VI: Häufigkeiten tiefer Beinvenenthrombosen (Gesamtraten symptomatischer und asymptomatischer) in der operativen und konservativen Medizin ohne Prophylaxe (nach ACCP 2004 [8], ACCP 2008 [11])

<table>
<thead>
<tr>
<th>Patientengruppe</th>
<th>Prävalenz von TVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Innere Medizin</td>
<td>10 bis 20%</td>
</tr>
<tr>
<td>Allgemeinchirurgie</td>
<td>15 bis 40%</td>
</tr>
<tr>
<td>Große gynäkologische Eingriffe</td>
<td>15 bis 40%</td>
</tr>
<tr>
<td>Große urologische Eingriffe</td>
<td>15 bis 40%</td>
</tr>
<tr>
<td>Neurochirurgie</td>
<td>15 bis 40%</td>
</tr>
<tr>
<td>Schlaganfall</td>
<td>20 bis 50%</td>
</tr>
<tr>
<td>Hüft- oder Kniegelenkersatz</td>
<td>40 bis 60%</td>
</tr>
<tr>
<td>Hüftfrakture</td>
<td>40 bis 60%</td>
</tr>
<tr>
<td>Multiples Trauma</td>
<td>40 bis 80%</td>
</tr>
<tr>
<td>Rückenmarkverletzung</td>
<td>60 bis 80%</td>
</tr>
<tr>
<td>Intensivmedizin</td>
<td>10 bis 80%</td>
</tr>
</tbody>
</table>


Da bisher kein verlässlicher Test zur Ermittlung eines individuellen Thromboserisikos zur Verfügung steht, die asymptomatiche Thrombose dennoch zur Entwicklung eines postthrombotischen Syndroms führen kann und die weit überwiegende Zahl tödlicher Lungenembolien ohne klinische Ankündigung auftritt, erscheint nur eine generelle Thromboembolieprophylaxe in Risikosituationen sinnvoll.

Die Indikationsstellung und Wahl der Prophylaxeform erfolgen so individuell wie möglich und risikoadaptiert. Dabei werden Patienten mit niedrigem, mittlerem und hohem Thromboembolierisiko unterschieden. Das individuelle Thromboserisiko setzt sich aus eingriffsbedingten (expositionellen) und patienteneigenen (dispositionellen) Risikofaktoren zusammen (siehe Kapitel 2.2).
2.2 Bedeutung von Risikofaktoren

Das individuelle Risiko setzt sich aus expositionellen und dispositionellen Risikofaktoren zusammen.

Das expositionelle Risiko ist durch Art und Umfang eines operativen Eingriffs oder Traumas bzw. einer akuten Erkrankung mit Immobilisation charakterisiert. Das dispositionelle Risiko umfasst angeborene und erworbene personenbezogene Faktoren.

Beide Aspekte sollen bei der Einschätzung des individuellen VTE-Risikos berücksichtigt werden. ↑↑

Die verschiedenen Risikofaktoren für die Entstehung einer Thromboembolie können in die Kategorien der expositionellen und dispositionellen Risikofaktoren eingeteilt werden. Das Gesamtrisiko für eine Thrombose ergibt sich aus der Kombination von Risikofaktoren dieser beiden Kategorien.


Neben dem expositionellen Risiko sind die dispositionellen Risikofaktoren des Patienten bei der Indikationsstellung prophylaktischer Maßnahmen zu berücksichtigen. Eine Übersicht relevanter dispositioneller Risikofaktoren findet sich in Tabelle VII.

Besonders wichtig sind die Erhebung und klinische Beurteilung der Anamnese bezüglich früher aufgetretener venöser Thromboembolien in der eigenen oder familiären Vorgeschichte. Bei positiver Anamnese sollte ein erhöhtes dispositionelles Risiko vermutet werden.
Tabelle VII: Dispositionelle Risikofaktoren, geordnet nach relativer Bedeutung

<table>
<thead>
<tr>
<th>Risikofaktor</th>
<th>Relative Bedeutung</th>
<th>Studien an konserativen Patienten</th>
<th>Studien an chirurgischen Patienten</th>
<th>Studien an Allgemeinbevölkerung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frühere TVT/LE</td>
<td>hoch</td>
<td>[19; 57-59]</td>
<td>[60-62]</td>
<td>[63; 64]</td>
</tr>
<tr>
<td>Thrombophile Hämostasedefekte**</td>
<td>artspezifisch gering bis hoch</td>
<td>[65-67]</td>
<td>[64; 68-70]</td>
<td>[64; 67; 71-77]</td>
</tr>
<tr>
<td>Maligne Erkrankung***</td>
<td>mittel bis hoch*</td>
<td>[58; 65; 78-82]</td>
<td>[61; 83; 84]</td>
<td>[63; 79; 85; 86]</td>
</tr>
<tr>
<td>Höheres Lebensalter (über 60 J., Risikozunahme mit dem Alter)</td>
<td>mittel*</td>
<td>[57-59; 80]</td>
<td>[69; 84; 87-91]</td>
<td>[63; 85; 86]</td>
</tr>
<tr>
<td>VTE bei Verwandten 1. Grades</td>
<td>mittel</td>
<td>Kann als Hinweis auf thrombophile Hämostasedefekte anamnestisch hilfreich sein [92-96].</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronische Herzinsuffizienz; Z.n. Herinzirkulation**</td>
<td>mittel*</td>
<td>[58; 59; 79; 80]</td>
<td>[62; 84; 97]</td>
<td>[62; 79; 85; 86; 98; 99]</td>
</tr>
<tr>
<td>Übergewicht (BMI &gt;30 kg/m2)</td>
<td>mittel*</td>
<td>[67; 100; 101]</td>
<td>[60; 69; 89; 101-104]</td>
<td>[64; 100; 105-109]</td>
</tr>
<tr>
<td>Akute Infektionen/entzündliche Erkrankungen mit Immobilisation***</td>
<td>mittel*</td>
<td>[57]</td>
<td>[97]</td>
<td>-</td>
</tr>
<tr>
<td>Therapie mit oder Blockade von Sexualhormonen (zur Kontrazeption, in der Postmenopause, zur Tumorbehandlung)</td>
<td>substanzspezifisch gering bis hoch</td>
<td>[67; 100]</td>
<td>[110]</td>
<td>[64; 67; 100; 108-113]</td>
</tr>
<tr>
<td>Schwangerschaft und Postpartalperiode</td>
<td>gering</td>
<td>[81]</td>
<td>-</td>
<td>[99; 114]</td>
</tr>
<tr>
<td>Nephrotisches Syndrom</td>
<td>gering</td>
<td>[115] [116; 117]</td>
<td>[115]</td>
<td>-</td>
</tr>
<tr>
<td>Stark ausgeprägte Varikosis</td>
<td>gering</td>
<td>[59; 81; 118]</td>
<td>[62; 84; 119; 120]</td>
<td>[63; 86]</td>
</tr>
</tbody>
</table>

Für die mit * gekennzeichneten Assoziationen ließen sich stetige Risikowirkungsbeziehungen ermitteln.

** z.B. Antiphospholipidsyndrom, Antithrombin-, Protein-C oder -S Mangel, APC-Resistenz / Faktor V-Leiden-Mutation, thrombophiler Prothrombinpolymorphismus, u.a.

*** Diese dispositionellen Risikofaktoren können auch als expositionelle Risikofaktoren auftreten bzw. angesehen werden.

Die verschiedenen thrombophilen Hämostasedefekte bedingen eine große Spannweite verschiedener Risikoerhöhungen. Antithrombin-, Protein-C- oder -S-Mangel und APC-Resistenz erhöhen das Risiko für VTE-Komplikationen jeweils etwa um das 8- bis 15-fache [121; 122]. Etwas weniger stark erhöhte Risiken ließen sich für den thrombophilen Prothrombinpolymorphismus (speziell G20210A) und die heterozygote Faktor-V-Leiden-Mutation nachweisen [123], die aber in der Bevölkerung häufiger vorhanden sind. Eine aktuelle und sehr detaillierte Meta-Analyse zur Bedeutung der einzelnen thrombophilen Hämostasedefekte findet sich bei Wu et al., 2006 [124]. Dort wird auch begründet, warum ein routinemäßiges Screening aller...
Patienten auf thrombophile Hämostasedefekte nicht sinnvoll ist.

Nikotinabusus wurde in einigen Studien als Risikofaktor beschrieben [79; 111; 125-132], kann aber insgesamt wohl nicht als relevantes Risiko angesehen werden [69; 103; 133]. Auch zum Einfluss des Geschlechts gibt es widersprüchliche Studienergebnisse [58; 84; 85; 89], so dass dieser Faktor nicht als Risikofaktor mitbetrachtet werden muss.

In der Schwangerschaft liegt dagegen ein leicht erhöhtes Basisrisiko (0,2%) thromboembolischer Ereignisse im Vergleich zur gleichaltrigen Allgemeinbevölkerungsgruppe vor. Dies ist überwiegend auf den veränderten hormonellen Status der Schwangeren sowie in der späteren Schwangerschaft auf den Kompressionseffekt des Uterus auf die großen Beckengefäße zurückzuführen und in allen Trimenonen gleich verteilt. Vor der Schwangerschaft bestehende thrombophile Faktoren sowie erst in der Schwangerschaft hinzutretende thrombophile Faktoren erhöhen das individuelle Risiko thromboembolischer Ereignisse in der Schwangerschaft und im Wochenbett.


2.3 Prinzipien der VTE-Prophylaxe

2.3.1 Allgemeine Basismaßnahmen


(Expertenkonsens)


Neben diesen Basismaßnahmen werden individuell und risikoadaptiert spezielle physikalische und/oder medikamentöse Maßnahmen zur VTE-Prophylaxe eingesetzt (siehe Kapitel 2.4, 2.5).

2.3.2 Labordiagnostik zur Risikoeinschätzung

Präoperative Laboruntersuchungen (z.B. D-Dimere) erhöhen nicht die Prädiktivität von postoperativen venösen Thromboembolien. Sie sollen daher zur Risikostratifizierung nicht eingesetzt werden. ☝️

(Expertenkonsens)


Auch zum Thrombin-Antithrombin-Komplex gibt es einige klinische Studien, die jedoch in den verschiedenen Bereichen der operativen Medizin keine, bzw. eine nur unzureichende Vorhersagekraft für diesen Parameter belegen konnten [138; 143-145].

2.3.3 Einteilung in Risikogruppen

Zur Einschätzung des VTE-Risikos auf der Basis von expositionellen und dispositionellen Risikofaktoren sollte eine Einteilung in drei Risikogruppen (niedrig, mittel, hoch) erfolgen. Art und Umfang der VTE-Prophylaxe sollen sich nach der Einteilung in diese Risikogruppen und nach Kontraindikationen richten. (Expertenkonsens)

In der klinischen Routine wird das individuelle Gesamt-Risiko für eine VTE in der Regel den Kategorien niedriges, mittleres oder hohes Risiko zugeordnet (Tabelle VIII). Diese dreistufige Einteilung folgt praktischen Erwägungen und kann naturgemäß nicht direkt durch Studien belegt oder widerlegt werden. Sie hat sich aber didaktisch und organisatorisch als äußerst vorteilhaft erwiesen [146]. Sie wird auch von der SFAR-Leitliniengruppe empfohlen [10]. Beispiele für die Risikogruppeneinschätzung sind in Tabelle IX dargestellt.


Tabelle VIII: Risikogruppen und Häufigkeiten von VTE

<table>
<thead>
<tr>
<th>Risikogruppe</th>
<th>Distale Beinvenenthrombose</th>
<th>Proximale Beinvenenthrombose</th>
<th>Tödliche Lungenembolie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niedriges VTE-Risiko</td>
<td>&lt;10%</td>
<td>&lt;1%</td>
<td>&lt;0,1%</td>
</tr>
<tr>
<td>Mittleres VTE-Risiko</td>
<td>10-40%</td>
<td>1-10%</td>
<td>0,1-1%</td>
</tr>
<tr>
<td>Hohes VTE-Risiko</td>
<td>40-80%</td>
<td>10-30%</td>
<td>&gt;1%</td>
</tr>
</tbody>
</table>

Die Einteilung in drei Risikokategorien kann sowohl für Patientengruppen als auch für individuelle Patienten vorgenommen werden. Da in etwa 70% bis 80% der Fälle mindestens ein Risikofaktor vorliegt [148; 149], sollte überprüft werden, ob sich im individuellen Fall aus der Kombination des expositionellen Risikos mit dispositionellen Risikofaktoren eine höhere Risikokategorie ergibt.

Komplexere Modelle, bei denen für jeden Patienten ein Punkte-Score aus expositionellen und dispositionellen Risikofaktoren gebildet wird, sind bisher kaum prospektiv validiert und klinisch erprobt worden [127; 150-153]. Lediglich in einer großen Studie erwies sich eine computer-gestützte Risikostratifizierung als hilfreich [146]. Auch wenn in der letzten Version der amerikanischen ACCP Leitlinie die Verwen-

Als Beispiel für die Risikostratifizierung in niedriges, mittleres und hohes VTE Risiko sind relevante Konstellationen exponitionaler und dispositioneller Risikofaktoren in Tabelle IX aufgeführt.

### Tabelle IX: Beispielhafte Risikokategorien (abgeleitet nach ACCP 2004 [8])

<table>
<thead>
<tr>
<th>Operative Medizin</th>
<th>Nicht-operative Medizin*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Niedriges VTE-Risiko</strong></td>
<td></td>
</tr>
<tr>
<td>• kleine operative Eingriffe</td>
<td>• Infektion oder akut-entzündliche Erkrankung ohne Bettlägerigkeit</td>
</tr>
<tr>
<td>• Verletzung ohne oder mit geringem Weichteilschaden</td>
<td>• zentralvenöse Kathether/Portkatheter</td>
</tr>
<tr>
<td>• kein zusätzliches bzw. nur geringes dispositionelles Risiko, sonst Einstufung in höhere Risikokategorie</td>
<td>• kein zusätzliches bzw. nur geringes dispositionelles Risiko, sonst Einstufung in höhere Risikokategorie</td>
</tr>
<tr>
<td><strong>Mittleres VTE-Risiko</strong></td>
<td></td>
</tr>
<tr>
<td>• länger dauernde Operationen</td>
<td>• akute Herzinsuffizienz (NYHA III/IV)</td>
</tr>
<tr>
<td>• gelenkübergreifende Immobilisation der unteren Extremität im Hartverband</td>
<td>• akut dekompensierte, schwere COPD ohne Beatmung</td>
</tr>
<tr>
<td>• arthroskopisch assistierte Gelenk-chirurgie an der unteren Extremität</td>
<td>• Infektion oder akut-entzündliche Erkrankung mit strikter Bettlägerigkeit</td>
</tr>
<tr>
<td>• ein zusätzliches bzw. nur geringes dispositionelles Risiko, sonst Einstufung in höhere Risikokategorie</td>
<td>• stationär behandlungsbedürftige maligne Erkrankung</td>
</tr>
<tr>
<td><strong>Hohes VTE-Risiko</strong></td>
<td>• Schlaganfall mit Beinparese</td>
</tr>
<tr>
<td>• größere Eingriffe in der Bauch- und Beckenregion bei maligen Tumoren oder entzündlichen Erkrankungen</td>
<td>• akut dekompensierte, schwere COPD mit Beatmung</td>
</tr>
<tr>
<td>• Polytrauma, schwerere Verletzungen der Wirbelsäule, des Beckens und/oder der unteren Extremität</td>
<td>• Sepsis</td>
</tr>
<tr>
<td>• größere Eingriffe an Wirbelsäule, Becken, Hüft- oder Kniegelenk</td>
<td>• schwer erkrankte Patienten mit intensivmedizinischer Behandlung</td>
</tr>
<tr>
<td>• größere operative Eingriffe in Körperhöhlen der Brust-, Bauch- und/oder Beckenregion</td>
<td></td>
</tr>
</tbody>
</table>

* Studiendaten liegen nur für den stationären Versorgungsbereich vor

Die Indikation zur Durchführung einer medikamentösen VTE-Prophylaxe soll bei jedem Patienten in Abhängigkeit von Art und Umfang des operativen Eingriffs/Traumas bzw. der Erkrankung und unter Berücksichtigung der dispositionellen Risikofaktoren gestellt werden. Auch bei operativen Eingriffen in der Schwangerschaft und postnatalen Periode soll eine risikoadaptierte VTE-Prophylaxe erfolgen (siehe Kapitel 2.2).

Auffassung der Leitliniengruppe eine sinnvolle Risikoeinschätzung auf dieser Basis aus Studien nicht ableitbar ist.

Bei der Indikation zur VTE-Prophylaxe in der individuellen Situation müssen Nutzen und Risiko für den Patienten gegeneinander abgewogen werden.

2.3.4 Umfang der VTE-Prophylaxe nach Risikogruppen

Unter Maßnahmen zur VTE-Prophylaxe werden zusammengefasst:

- Basismaßnahmen (Frühmobilisation, Bewegungsübungen, Anleitung zu Eigenübungen)
- Physikalische Maßnahmen (z.B. Medizinische Thrombose-Prophylaxe-Strümpfe (MTPS), intermittierende pneumatische Kompression (IPK))
- Medikamentöse Maßnahmen

(Expertenkonsens)

Für Patienten mit niedrigem VTE-Risiko sollten Basismaßnahmen regelmäßig angewendet werden. ↑

Sie können durch physikalische Maßnahmen ergänzt werden. ⇔

(Expertenkonsens)

Bei Patienten mit mittlerem und hohem VTE-Risiko soll eine medikamentöse VTE-Prophylaxe durchgeführt werden. ↑↑


Bei Patienten mit mittlerem und hohem VTE-Risiko sollten neben einer medikamentösen Prophylaxe Basismaßnahmen eingesetzt werden. ↑

Zusätzlich können physikalische Maßnahmen angewendet werden. ⇔

(Expertenkonsens)

In zahlreichen früheren randomisierten Studien konnte gezeigt werden, dass eine Gabe gerinnungshemmender Substanzen, insbesondere von Heparinen, das Risiko einer TVT um etwa die Hälfte reduziert [160-167]. Die Prophylaxe mit Heparinen
führt zu einer Thrombosereduktion in der Allgemeinchirurgie von ca. 30% auf 5 - 15% und in der Unfallchirurgie von ca. 50% auf 25 - 30%. Da sich die Wirkungen physikalischer und medikamentöser VTE-Prophylaxemaßnahmen sinnvoll ergänzen, können beide Formen der Prophylaxe kombiniert eingesetzt werden [167]. Mehrere ältere Studien haben den additiven Wert der einen zur anderen Maßnahme zeigen können (siehe hierzu Kapitel 2.4). Auf eine medikamentöse VTE-Prophylaxe kann bei mittlerem und hohem Risiko nicht verzichtet werden, es sei denn Kontraindikationen limitieren deren Einsatz.


Erhöht sich für Schwangere mit einem niedrigen Thromboserisiko das Risiko auf Grund zusätzlicher Faktoren (Adipositas, Präeklampsie, Bettlägerigkeit, Infektion) soll zusätzlich zu den physikalischen Maßnahmen eine medikamentöse Prophylaxe erfolgen (Tabelle VII-Tabelle IX, siehe auch Tabelle XI und Tabelle XII in Kapitel 3.4).
2.4 Physikalische Maßnahmen zur VTE-Prophylaxe

2.4.1 Physikalische Maßnahmen

Zu den physikalischen Maßnahmen gehören vor allem medizinische Thromboseprophylaxestrümpfe (MTPS) und intermittierende pneumatische Kompression (IPK).

Zur Indikationsstellung wird auf die speziellen Empfehlungen in den einzelnen Fachgebieten verwiesen.

(Expertenkonsens)

Basismaßnahmen sowie physikalische Maßnahmen sollen eine indizierte medikamentöse VTE-Prophylaxe nicht ersetzen. ↑↑

Umgekehrt sollte bei einer medikamentösen VTE-Prophylaxe nicht auf Basismaßnahmen verzichtet und physikalische Maßnahmen sollten indikationsgerecht eingesetzt werden. ↑

(Expertenkonsens)

Bei Kontraindikationen gegen eine medikamentöse VTE-Prophylaxe sollen physikalische Maßnahmen zur Anwendung kommen. ↑↑

(Expertenkonsens)

Prinzipiell sind die folgenden allgemeinen Empfehlungen zur VTE-Prophylaxe bei allen Patienten zu beachten:

- Kritische Indikationsstellung immobilisierender Maßnahmen, insbesondere des Sprung- und Kniegelenks und der Beckenregion
- Kurzer Immobilisationszeitraum
- Kurzes Intervall zwischen Trauma und Operation.

Physikalische Maßnahmen haben zum Ziel, die Blutströmungsgeschwindigkeit in den Venen zu erhöhen und damit der Thromboseentstehung vorzubeugen. Sie werden lokal an den unteren Extremitäten angewandt. Dazu gehören gehören vor allem:

- Sorgfältig angepasste medizinische Thromboseprophylaxestrümpfe (MTPS) als Oberschenkel- oder Wadenstrumpf
- Intermittierende pneumatische Kompression (IPK).


Die intermittierende pneumatische Kompression (IPK) ersetzt die Arbeit der Wadenmuskelpumpe beim immobilen Patienten. Zur VTE-Prophylaxe werden Geräte mit 1 bis 3 Kamern verwendet. Nach Anlegen der Fuß- oder Beinmanschetten werden die Luftkammern mit einem Druck um 45 mmHg in definierten Zeitabständen automatisch aufgeblasen und wieder entleert. Als Kontraindikationen gelten die dekompensierte (Rechts-)Herzinsuffizienz, offene Wunden, die periphere arterielle Verschlusskrankheit (PAVK), ausgedehnte Entzündungsreaktionen (Phlebitis, Ery-
sipel), Traumen, Neuropathien und der schwere, nicht einstellbare Hypertonus. Die IPK ist eine wirksame Methode zur Thromboseprophylaxe. Die Datenlage ist deutlich besser als für MTPS, wie eine aktuelle Metaanalyse zeigt. Es konnten 70 Studien mit insgesamt über 16.000 Patienten berücksichtigt werden. Danach liegt das relative Risiko für das Auftreten von Beinvenenthrombosen für IPK bei 0,43 (95% CI 0,36-0,52) gegenüber 0,61 (95% CI 0,39-0,93) für MTPS. Für das Auftreten von Lungenembolien ergaben sich entsprechende Vergleichszahlen von 0,48 (95% CI 0,33-0,69) gegenüber 0,64 (95% CI 0,21 – 1,95). Die IPK ist gegenüber einer modernen pharmakologischen Prophylaxe gleich effektiv bei geringerem Blutungsrisiko von 0,41 (95% CI 0,25-0,65). Die Kombination von IPK mit medikamentöser Prophylaxe reduzierte gegenüber der alleinigen IPK das Risiko für TVT weiter auf 0,54 (95% CI 0,32-0,91) und für Lungenembolie auf 0,62 (95% CI 0,13-3,02). Für keinen der genannten Vergleiche fand sich ein Unterschied in der Mortalität [173]. Methodische Einwände fallen in der Meta-Analyse zur IPK wegen der großen Zahl an eingebrachten Studien und Patienten weniger ins Gewicht als bei der Metaanalyse zu den MTPS. Die Ergebnisse dieser Metaanalyse werden bestätigt durch die darin nicht enthaltene, aktuelle CLOTS-3-Studie, in der IPK gegenüber keiner IPK bei über 2800 Patienten mit immobilisierendem Schlaganfall getestet wurde [174]. Das adjustierte relative Risiko für asymptomatische und symptomatiche TVT betrug mit IPK 0,65 (95% CI 0,51-0,84). Die pharmakologische Prophylaxe war den Untersuchern in beiden Gruppen freigestellt; 31% der Patienten erhielten Heparin (17% in prophylaktischer und 14% in therapeutischer Dosierung) und 69% keine Antikoagulation.

Unterschiedliche Traditionen haben dazu geführt, dass die IPK in Deutschland eine weit geringere Verbreitung hat als z.B. in den USA. Die – nach Datenlage– zu rechtfertigende Bevorzugung der IPK gegenüber den MTPS hat in dieser Leitlinie dennoch keinen Niederschlag gefunden, da sie nicht in die Versorgungsrealität zu übersetzen wäre. Es erscheint jedoch sinnvoll, dass jedes Krankenhaus einige IPK-Geräte vorhält, um das Verfahren bei Patienten mit hohem VTE-Risiko und Kontraindikation gegen eine medikamentöse Prophylaxe zur Anwendung bringen zu können.

Das A-V-Impulssystem gehört zu den pneumatischen Kompressionsgeräten. Über eine schuhartige Manschette werden während des Aufblasens die plantaren Venenplexus am Fuß entleert. Die Methode wurde in einer prospektiven randomisierten Studie mit unilateraler Hüftgelenkoperation zusätzlich zur medikamentösen VTE-Prophylaxe getestet. In dieser 104 Patienten umfassenden Studie unterschied sich die Rate an postoperativen Perfusionsdefekten in der Lungenszintigraphie nicht signifikant in der behandelten (9,6%) im Vergleich zur unbehandelten Gruppe (15,4%) [175].

Spezielle Indikationen für einzelne physikalische Therapiemaßnahmen bei bestimmten Patientenpopulationen werden in den speziellen Empfehlungen der einzelnen Fachgebiete erläutert (siehe Abschnitt 3 dieser Leitlinie).
2.4.2 Vena-cava-Filter

Es gibt in der Regel keinen Einsatzbereich für Vena-cava-Filter mehr.

Die Datenlage zu Vena-cava-Filtern ist sehr dürftig [176-178]. Die Filter haben sich auch in der Therapie von VTE nicht bewährt: Eine randomisierte Studie zeigte mit 2 Auswertungszeitpunkten explizit die Nachteile einer Langzeitimplantation (Thrombosierung des Filters, Dislozierung etc.) [179; 180]. Der Einsatz ist dem absoluten Einzelfall vorbehalten, wenn überhaupt nur passager, sofern alle anderen Maßnahmen zur VTE-Prophylaxe ausgeschöpft oder kontraindiziert sind.

2.5 Medikamentöse VTE-Prophylaxe

2.5.1 Arzneimittel zur medikamentösen VTE-Prophylaxe


Unter Abwägung von Effektivität, Blutungs- und HIT II-Risiko soll NMH gegenüber UFH bevorzugt werden. ⇑⇑

Kontraindikationen, fach- und substanzspezifische Besonderheiten sowie Fachinformationen sollen berücksichtigt werden. ⇑⇑
(Expertenkonsens)

ASS soll zur VTE-Prophylaxe nur in begründeten Einzelfällen eingesetzt werden. ⇑⇑
(Expertenkonsens)

Zugelassene Arzneimittel zur wirksamen medikamentösen VTE-Prophylaxe sind:

- Heparine
- Danaparoid
- Faktor Xa-Inhibitoren
- Thrombininhibitoren
- Vitamin-K-Antagonisten (Kumarine).


Beim Einsatz jeglicher Art von Antithrombotika zur VTE-Prophylaxe soll das Blutungsrisiko bedacht werden. Dies gilt insbesondere für den gleichzeitigen Einsatz von Antikoagulanzien und Thrombozytenfunktionshemmern, aber auch für die Kom-

Bei subkutaner Applikation von Antikoagulanzien zur VTE-Prophylaxe ist auf einen ausreichenden Abstand zu Wunden zu achten, z.B. durch Applikation an der kontralateralen Extremität.

2.5.2 Heparine

Unfraktioniertes Heparin (UFH; HWZ ca. 2h) ist ein Gemisch aus Mukopolysacchariden unterschiedlicher Kettenlänge, das seine antikoagulatorische Wirkung überwiegend durch Potenzierung der Antithrombinwirkung gegenüber Thrombin und Faktor Xa entfaltet. UFH wird aus Schweinedarmmukosa gewonnen und aufgrund der Herkunft und Aufreinigung aus tierischem Material besteht ein Risiko einer Verschleppung von kontaminierenden Stoffen aus dem Ausgangsmaterial in das Endprodukt, wodurch unerwünschte Wirkungen ausgelöst werden können. UFH wird unabhängig von der Leber- oder Nierenfunktion eliminiert.

Die zwei- oder dreimal tägliche subkutane Gabe von UFH ("low-dose-heparin": 2-3 x 5000 bzw. 2 x 7500 IU/Tag) ist zur Thromboembolieprophylaxe wirksam und bedarf bei diesen pauschalierten Dosierungen keines Monitorings hinsichtlich der antikoagulatorischen Wirkung. Zum Monitoring der Thrombozytenzahl siehe Kap. 2.6.2.

Die niedermolekularen Heparine (NMH; HWZ ca. 4 h) werden durch verschiedene Fragmentierungsverfahren aus UFH gewonnen und stellen keine einheitliche Substanzgruppe dar. Auch hier besteht ein Risiko der Verschleppung bei Kontamination des Ausgangsmaterials. Sie wirken antithrombinvermittelt bevorzugt gegen Faktor Xa. Aufgrund ihrer überwiegend renalen Elimination besteht bei stark eingeschränkter Nierenfunktion ein Kumulationsrisiko. NMH haben einen präparatespezifisch unterschiedlichen Zulassungsstatus und unterschiedliche pharmakologische und -kinetische Eigenschaften. Es sind die präparatespezifischen Anwendungs-empfehlungen zu beachten. Wegen ihrer verbesserten pharmakologischen Eigenschaften, einem geringeren Nebenwirkungsrisiko, einer besseren Bioverfügbarkeit, und längerer Halbwertszeiten sowie ihrer guten Praktikabilität (einmal tägliche Verabreichung) bieten NMH Vorteile gegenüber UFH.

Wirksamkeit und Verträglichkeit der verschiedenen NMH Präparate wurden in zulassungsrelevanten Studien geprüft und stehen in pauschalierten, vereinzelt auch gewichtsadaptierten Dosierungen zur VTE Prophylaxe für viele Patientenpopulationen zur Verfügung. Ein Monitoring durch Nachweis der Anti-Xa-Aktivität ist möglich, aber nur sehr selten notwendig, z.B. bei schwerer Niereninsuffizienz. Niedermolekulare Heparine, die bei guter Verträglichkeit ihre Wirksamkeit durch Redukti-
on der Thromboembolie-rate bei Patienten im Hochrisikobereich gezeigt haben, können auch bei mittlerem Risiko eingesetzt werden.

Der Vergleich zwischen NMH und UFH wurde in einer großen Zahl RCTs bei chirurgischen Patientenkollektiven untersucht [94; 129; 182-184]. Die Meta-Analyse von Koch et al. [185] ergab eine tendenziell geringere TVT-Rate unter NMH (OR 0,83; 95% CI 0,68 bis 1,02) bei orthopädisch/ unfallchirurgischen Eingriffen. Die Blutungskomplikationen sind ähnlich (OR 0,96). Die NICE-Bewertung ergab insgesamt eine 13%ige Reduktion von TVT und eine 34%ige Reduktion von LE durch NMH gegenüber UFH, wobei gleichzeitig auch das Risiko größerer Blutungen um 14% reduziert wurde. In einer 2002 publizierten Systematischen Übersichtsarbeit (Cochrane-Review) zur VTE-Prophylaxe bei Oberschenkelhalsfrakturen wurde dagegen kein klarer Vorteil der NMH gefunden [186].

Unter den neueren Studien sticht die Arbeit von Haas et al. aufgrund der großen Fallzahl (n = 23078) besonders hervor [187]. Primärer Endpunkt der Studie war die Rate autopsiegesicherter tödlicher Lungenembolien. Hierbei fand sich eine gleiche Inzidenz unter UFH und NMH.

Für konservative Patientenkollektive liegen nur wenige UFH- und NMH-Vergleichsstudien vor, wobei sich nach ischämischem Schlaganfall Hinweise auf eine überlegene Wirksamkeit von NMH bei vergleichbarem Blutungsrisiko [188] bzw. bei internistischen Patienten bei vergleichbarer Wirksamkeit ein vermindertes Blutungsrisiko für NMH ergeben hat [189; 190].


Bei Heparinanwendung soll an das Risiko einer HIT II gedacht werden!

2.5.3 **Danaparoid**


Mehrere RCTs haben Danaparoid vor allem in der Traumatologie und bei Patienten nach Schlaganfall untersucht. Hierbei zeigte sich eine gute Wirksamkeit und Verträglichkeit, die sich nicht wesentlich von NMH unterschied. Danaparoid ist eines der wirksamen Medikamente zur medikamentösen VTE-Prophylaxe für Situationen, in denen Heparine nicht angewendet werden sollen, einschließlich Patienten mit HIT II (s. Kap. 2.6.2).


2.5.4 **Pentasaccharid: Fondaparinux**

Fondaparinux (HWZ ca. 17-21 h lt. Fachinformationen) ist ein synthetisch hergestelltes Pentasaccharid, das antithrombinvermittelt spezifisch Faktor Xa hemmt. In klinischen Studien zur venösen Thromboembolieprophylaxe (orthopädische Hochrisikochirurgie, große abdominelle Chirurgie, Innere Medizin) hat sich Fondaparinux in einmal täglicher Dosierung von 2,5mg s.c. als antithrombotisch sehr wirksam und verträglich erwiesen. Wegen der fast ausschließlich renalen Elimination besteht bei stark eingeschränkter Nierenfunktion Kumulationgefähr. Liegt die Kreatinin-Clearance im Bereich 20-50ml/min, soll die Dosis auf 1,5mg tgl. s.c. reduziert werden.

Die Meta-Analyse von vier RCTs mit orthopädis/unfallchirurgischen Patienten ergab gegenüber NMH eine signifikante Reduktion thromboembolischer Komplikationen (RR 0,52, 95%CI 0,44-0,60) [132]. Hierbei handelte es sich um vorwiegend phlebographisch nachgewiesene, klinisch asymptomatische Thrombosen. Parallel zeigte sich eine Erhöhung der Blutungskomplikationen (RR 1,49, 95%CI 1,16-1,92). Wird die Prophylaxe mit Fondaparinux zulassungskonform frühestens 6 Stunden nach dem Ende der Operation begonnen, treten Blutungen bei erhaltener Wirksamkeit nicht vermehrt auf.

2.5.5 Nicht-Vitamin-K-abhängige orale Faktor Xa-Inhibitoren

**Rivaroxaban**

Rivaroxaban (HWZ 5 bis 13 h lt. Fachinformationen), ist ein kleinmolekularer, oral zu verabreichender direkter Faktor Xa Inhibitor, der seine Wirksamkeit ohne Kofaktoren entfaltet. Die Substanz wird sowohl hepatisch als auch renal eliminiert, woraus sich ein Kumulationsrisiko bei stark eingeschränkter Nierenfunktion (bei Kreatininclearance unter 30 ml/min) oder bei mittelschwerer oder schwerer Leberfunktionsstörung ableitet. Bei Einmalgabe von 10 mg zeigte sich in allen Zulassungsstudien bei elektiver Knie- und Hüftgelenksendoprothetik im Vergleich zu Enoxaparin bezüglich des primären Studienendpunktes (Gesamt-VTE-Rate) eine signifikante Überlegenheit von Rivaroxaban bei vergleichbarer Rate an Blutungen. Die Metaanalyse dieser vier RCTs zeigt für den primären Wirksamkeitsendpunkt aus symptomatischer VTE und Tod nach zwei Wochen eine Odds Ratio von 0,44 (95%CI 0,23-0,79) bzw. am Ende der Medikationsperiode von 0,38 (0,22-0,62). Wobei sich zu beiden Zeitpunkten kein Unterschied in der Rate von schweren Blutungskomplikationen ergab [26]. Dabei wurde die medikamentöse Prophylaxe 6 bis 10 Stunden postoperativ begonnen und indikationsabhängig für etwa 10 bis 35 Tage fortgeführt.

**Apixaban**

Apixaban (HWZ im Mittel ca. 13 h lt. Fachinformationen), ist ein kleinmolekularer, oral zu verabreichender direkter Faktor Xa Inhibitor, der seine Wirksamkeit ohne Kofaktoren entfaltet. Die Substanz wird sowohl hepatisch als auch renal eliminiert, woraus sich ein Kumulationsrisiko bei stark eingeschränkter Nierenfunktion (bei Kreatininclearance unter 30 ml/min) oder bei mittelschwerer oder schwerer Leberfunktionsstörung ableitet. Bei Gabe von 2 x 2,5 mg Apixaban tgl. zeigte sich in den europäischen Zulassungsstudien bei elektiver Knie- und Hüftgelenksendoprothetik im Vergleich zu Enoxaparin (40mg 1 x tgl.) bezüglich des primären Studienendpunktes (proximale TVT, LE und VTE-bedingte Mortalität) eine signifikante Überlegenheit mit einer Risikodifferenz von -0,8 % (95% CI -1,2- -0,3) bei vergleichbarer Rate an Blutungen [193]. Dabei wurde die medikamentöse Prophylaxe 12 bis 24 Stunden postoperativ begonnen und indikationsabhängig für etwa 10 bis 35 Tage fortgeführt.

2.5.6 Parenterale Thrombininhibitoren: Argatroban

Das Argatroban (HWZ ca. 50 min lt. Fachinformationen) ist ein direkter (d.h. ohne Vermittlung durch Antithrombin wirksamer) Thrombinhemmer, dessen antikoagulatorischer Effekt mittels der aPTT, Thrombinzeit (TT) oder Ecarin Cloting Time (ECT)

Argatroban wird überwiegend hepatisch eliminiert, dementsprechend besteht bei Leberfunktionsstörung Kumulations- und damit Blutungsgefahr.

2.5.7 Orale Thrombininhibitoren: Dabigatranetexilat

Dabigatran ist ein kleinmolekularer direkter Thrombinhemmer, der aus dem Prodrug Dabigatranetexilat nach oraler Einnahme entsteht. Die Halbwertzeit beträgt bei Patienten mit größeren orthopädischen Eingriffen 12 bis 17 h, die Elimination erfolgt überwiegend renal, so dass bei mittelgradiger (Kreatinin clearance 50-30 ml/min) oder schwererer Niereninsuffizienz Kumulationsgefahr besteht. Bei Beginn 1 bis 4 Stunden postoperativ mit einmal 110 bzw. 75 mg und Fortführung der VTE-Prophylaxe mit 220 bzw. 150 mg einmal täglich zeigte sich in zwei europäischen Zulassungsstudien bei elektiver Knie- und Hüftgelenkendoprothetik im Vergleich zu Enoxaparin (40mg 1x tg.) bezüglich des primären Studienendpunktes (Gesamtrate an VTE und VTE-bedingte Mortalität) eine vergleichbare Wirksamkeit (Risikodifferenz -0.2% (95% CI -1.3% -0.9%) bei 220mg bzw. 0.5% (95% CI -0.6%-1.6%) bei 150mg) und Sicherheit (schwere Blutungen: Risikodifferenz -0.2% (95% CI -0.8% -0.5%) bei 220mg bzw.-0.4% (95% CI -1.0%-0,2%) bei 150mg) [194]. Dabei wurde die medikamentöse Prophylaxe indikationsabhängig für etwa 10 bis 35 Tage fortgeführt. Die empfohlenene Dosis ab dem ersten postoperativen Tag beträgt 220 mg, bei Alter über 75 Jahren oder bei Patienten mit mittelgradig eingeschränkter Niereninsuffizienz 150 mg täglich.

2.5.8 Vitamin K Antagonisten (Kumarine)

Warfarin (HWZ ca. 24 h), Phenprocoumon (HWZ ca. 120 h) und andere Vitamin-K-Antagonisten (VKA) vom Kumarintyp wirken antikoagulatorisch durch individuell unterschiedlich ausgeprägte Hemmung der Carboxylierung der Vitamin-K-abhängigen Gerinnungsfaktoren (II, VII, IX und X) mit entsprechender Erhöhung des INR Werts. Sie sind wirksam zur perioperativen Prophylaxe von venösen Thromboembolien bei Patienten mit mittlerem oder hohem Risiko. Wegen verzögert einsetzender Wirkung und der notwendigen Laborkontrollen (INR) mit individueller Dosisanpassung werden Vitamin K Antagonisten in Europa kaum perioperativ, gelegentlich allerdings zur Langzeitprophylaxe (INR 2,0 - 3,0) eingesetzt.

Vitamin K Antagonisten führen selten zur medikamentösen Hepatitis mit und ohne Ikterus, sehr selten zur kumarinduzierten Hautnekrose. Weitere seltene unerwünschte Wirkungen sind: Allergische Hautreaktionen, Osteopenie, und andere. In der Schwangerschaft sind Vitamin K-Antagonisten vom Kumarintyp ab der

Zum Vergleich zwischen VKA und Heparinen zur Thromboseprophylaxe liegen zahlreiche Studien vor. Sie beziehen sich teilweise auf UFH, meist aber auf NMH (Evidenztabelle 20). Die Ergebnisse belegen bei Vergleich von Heparinen zu VKA einen Vorteil der Heparinlage, allerdings auf Kosten von Blutungskomplikationen [165; 195]. In der Meta-Analyse von Roderick et al. fand sich eine um 64% reduzierte TVT-Rate gegenüber einer um 35% erhöhten Blutungsrate [165]. Im Vergleich zu NMH sind VKA bei Auswertung von 9 Studien bei chirurgischen Patientengruppen bei vergleichbarem Blutungsschicksal weniger wirksam als NMH (NICE 2007) [12]. In der Abwägung von Wirksamkeit, Praktikabilität und Risiko erscheint daher die Kumaringabe eher nachteilig zu sein.

Sofern Vitamin K Antagonisten eingesetzt werden, soll die INR-adjustierte der fixen Dosierung vorgezogen werden [196; 197]. Der INR-Zielkorridor liegt dabei zwischen 2,0 und 3,0. Es gibt jedoch keine klaren Angaben, wann und mit welcher Dosis von VKA postoperativ begonnen werden soll.

2.6 Nebenwirkungen und Anwendungseinschränkungen der medikamentösen VTE-Prophylaxe

2.6.1 Blutungskomplikationen bei medikamentöser VTE-Prophylaxe

Beim Einsatz von Antikoagulanzien zur VTE-Prophylaxe soll das eigriffs- und patientenspezifische Blutungsrisiko bedacht werden. ⬆⬆

Bei Auswahl und Anwendung der Antikoagulanzien sollen die Nieren- und Leberfunktion berücksichtigt werden. ⬆⬆

(Expertenkonsens)

Auch bei der sachgerechten Anwendung von Antikoagulanzien zur venösen Thromboembolieprophylaxe ist insbesondere perioperativ mit einem vermehrten Auftreten meist leichter, selten aber auch schwererer Blutungskomplikationen zu rechnen (vgl. o.) [198; 199].

Bei klinisch-anamnestischer Blutungsneigung oder absehbarem Blutungsrisiko (z.B. bei schwerer Thrombozytopenie oder -pathie) kann die medikamentöse Thromboembolieprophylaxe kontraindiziert sein.

Bei Blutungen unter medikamentöser VTE-Prophylaxe müssen mögliche Ursachen abgeklärt werden, wie z.B. Ausbleiben der primären Hämostase nach chirurgischem Eingriff, fehlerhafte Medikamentendosierung, Arzneimittelkumulation unter Nieren- oder Leberinsuffizienz (200) oder Komedikation mit Thrombozytenfunktionshemmern oder nicht steroidalen Antiphlogistika.

Die Intensität der aktuellen antikoagulatorischen Wirkung von UFH und parenteralen Thrombininhibitoren kann mittels der aPTT bestimmt werden, die von NMH, Danaparoid und Fondaparinux mittels der Anti-Xa-Aktivität bzw. des HEP-Testes, die von
Rivaroxaban, Apixaban und Dabigatran durch kalibrierte Testverfahren und die von Vitamin-K-Antagonisten durch Messung des INR Werts.


### 2.6.2 Heparininduzierte Thrombozytopenie (HIT)

Bei Heparinanwendung soll an das Risiko einer HIT II gedacht werden. (Expertenkonsens)

Bei Verwendung von UFH sollte regelmäßig eine Kontrolle der Thrombozytenzahl durchgeführt werden. (Expertenkonsens)

Bei Verwendung von NMH kann die Kontrolle in der Regel entfallen ⇄

Die wichtigste unerwünschte Arzneimittelwirkung bei der Heparinanwendung ist die Heparininduzierte Thrombozytopenie (HIT). Thrombozytopenien unter Heparin treten in zwei Formen auf:

- Heparininduzierte Thrombozytopenie Typ I (HIT I) und
- Heparininduzierte Thrombozytopenie Typ II (HIT II)

Der Abfall der Thrombozyten bei heparininduzierter Thrombozytopenie Typ I ist gering bis mäßig ausgeprägt, meist vorübergehend und klinisch bedeutungslos. Er tritt während der ersten Behandlungstage auf und erreicht nur selten den Wert von <100
000/µl. Heparin muss bei HIT I nicht abgesetzt werden, auch bei Weiterbehandlung mit Heparin steigen in den nächsten Tagen die Thrombozytenzahlen wieder an.

Im Unterschied dazu ist die HIT II eine gefährliche Komplikation der Heparinanwendung. Diese immunologisch vermittelte Form der Thrombozytopenie geht oft mit venösen und/oder arteriellen Thromboembolien einher und kann sich auch unspezifisch in Form von Hautnekrosen oder entzündlichen Reaktionen an den Heparineinstichstellen klinisch manifestieren. Die Inzidenz ist für verschiedene Patientenkollektive unterschiedlich und im Einzelnen nicht genau bekannt. Bei Patienten mit großen chirurgischen und/oder orthopädischen Eingriffen muss unter unfraktioniertem Heparin in ca. 10% der Fälle mit dem Auftreten von Antikörpern, in bis zu 3% mit einer HIT II sowie seltener zusätzlich mit dem Auftreten von arteriellen und/oder venösen Thromboembolien gerechnet werden. Unter niedermolekularem Heparin wird die HIT II deutlich seltener als unter UFH beobachtet. Es wird eine Differenz in der Größe einer Zehnerpotenz vermutet, doch liegen keine ausreichend belastbaren Daten für die Inzidenz der HIT II unter verschiedenen Heparinen vor [201-204].

Bei HIT II fällt die Thrombozytenzahl in der Regel zwischen dem 5. und 14., selten bis zum 21.Tag nach Erstanwendung auf. Ein Abfall auf Werte um > 50 % vom höchsten Thrombozytenwert ab Tag 5 der Heparingabe ist typisch. Dabei sind sehr niedrige Thrombozytenwerte < 20.000 /µl nicht typisch für HIT II und in der Regel durch andere Ursachen bedingt.

werden kann.

Eine HIT II sollte in die Differenzialdiagnose immer einbezogen werden, wenn:

- Hinweise auf Thrombosen oder Embolien unter Heparinabgabe bestehen
- die Thrombozytenzahlen um mehr als 50% im Vergleich zum höchsten Wert ab Tag 5 der Heparinabgabe abfallen und kein anderer Grund vorliegt (z.B. große Operation, Chemotherapie, Sepsis, HELLP-Syndrom),
- sich nekrotische oder entzündliche Infiltrationen an den Heparininjektionsstellen zeigen.

Bei Patienten mit Verdacht auf HIT II:

- muss Heparin sofort abgesetzt und im Weiteren strikt vermieden und durch ein alternatives, sofort wirksames, nicht HIT Typ II auslösendes Antikoagulans ersetzt werden (vgl. ACCP-Leitlinien [8; 11; 205]. Hierbei ist im Weiteren zu bedenken, dass auch andere Medikamente, z.B. PPSB und Antithrombin bzw. Katheterspülungen geringe Mengen Heparin enthalten können!
- sollen in der Akutphase keine Thrombozytenkonzentrate gegeben werden
- sollen VKA erst nach stabiler Normalisierung der Thrombozytenzahl zur Anwendung kommen
- kann der Ausschluss einer tiefen Beinvenenthrombose durch Kompressionssonographie sinnvolll sein
- sollte jede Episode mit Verdacht auf HIT II im Nachhinein abschließend dahingehend bewertet werden, ob tatsächlich eine HIT II vorgelegen hat oder nicht. Im positiven Fall sollte der Patient informiert und mit einem Ausweis versehen werden.

2.6.3 Osteoporose / Osteopenie

Bei Langzeitanwendung (länger als 4-6 Monate) von UFH in Dosierungen von 15.000 – 30.000 IU/Tag, ist die Entwicklung einer Osteopenie oder deren Verschlechterung möglich. Deutlich seltener ist diese Nebenwirkung unter NMH.

2.7 Beginn und Dauer der medikamentösen VTE-Prophylaxe

2.7.1 Beginn der medikamentösen VTE-Prophylaxe

Die medikamentöse VTE-Prophylaxese sollte zeitnah zur risikoverursachenden Situation begonnen werden. (Expertenkonsens)

Die perioperative medikamentöse VTE-Prophylaxe mit Heparinen wird in Europa üblicherweise präoperativ begonnen, in Nordamerika dagegen grundsätzlich postoperativ und meist mit höherer Dosis. Es gibt keine Daten, die eine überlegene Wirk-
samkeit oder Sicherheit des einen gegenüber dem anderen Regime belegen. Um-
stände, die das unmittelbar perioperative Blutungsrisiko erhöhen, wie zum Beispiel
die zeitnahe Einnahme von Thrombozytenfunktionshemmern, legen den postoperati-
tiven Beginn der medikamentösen Prophylaxe nahe. Bei Eingriffen am ZNS wurde
ein erhöhtes Blutungsrisiko bei präoperativer NMH-Gabe gefunden (s. Kap. 3.1.2).

Fondaparinux, Dabigatranetexilat und Rivaroxaban werden bei Elektivoperationen
grundsätzlich erst postoperativ begonnen. Die medikamentenspezifischen Zeitinterv-
alle sollen berücksichtigt und der jeweiligen Fachinformation entnommen werden.
Der minimale Zeitabstand zwischen Operationsende und der ersten Gabe von
Fondaparinux beträgt 6 h. Das Intervall kann ohne Wirksamkeitsverlust auf bis zu
20 h ausgedehnt werden [206].
Bei traumatischen oder nicht-chirurgischen Patienten sollte die medikamentöse
Thromboembolieprophylaxe zeitnah zum Auftreten des Thromoserisikos begonnen
werden. Bei traumatischen Patienten muss sie wegen der möglichen Blutungs-
komplikationen sorgfältig auf die geplante Operations- und Anästhesie-Strategie
abgestimmt werden (vgl. Kapitel 2.8).

2.7.2 Dauer der medikamentösen VTE-Prophylaxe

Die Dauer der medikamentösen VTE-Prophylaxe soll sich am Fortbestehen
relevanter Risikofaktoren für venöse Thromboembolien orientieren. ↑↑
Bei Notwendigkeit der Fortführung der Prophylaxe soll der weiterbehan-
delnde Arzt darüber informiert und der Patient angehalten werden, sich
zeitnah bei diesem vorzustellen, um eine lückenlose VTE-Prophylaxe si-
erzustellen. ↑↑
(Expertenkonsens)

Heute werden Patienten auch mit fortbestehendem VTE-Risiko, z.B. postoperativ,
nach Traumata oder mit eingeschränkter Mobilisation, oft früh aus der stationären
Behandlung entlassen [207; 208]. Dementsprechend ist es sinnvoll, am Ende der
stationären Behandlung für die poststationäre Phase (Rehabilitation oder ambulante
Behandlung) eine erneute Risikoeinschätzung vorzunehmen und die Prophylaxe-
Maßnahmen entsprechend anzupassen. Indikationsspezifische Aspekte hierzu fin-
den sich im speziellen Teil.
Beim Übergang von der stationären auf die poststationäre Behandlung dürfen keine
Prophylaxelücken entstehen. Daher ist eine schnelle und vollständige Kommunika-
tion zwischen beiden Bereichen und ggf, die überbrückende Mitgabe von Medika-
menten bei Entlassung notwendig (siehe hierzu auch spezielle Empfehlungen im
Abschnitt 3).
### 2.8 Medikamentöse VTE-Prophylaxe und rückenmarknahe Anästhesie

Die Applikation einer medikamentösen VTE-Prophylaxe soll in ausreichendem zeitlichen Abstand zur Regionalanästhesieeinleitung und Katheterentfernung erfolgen. (Expertenkonsens)


Da insbesondere die medikamentöse VTE-Prophylaxe sehr häufig mit spinalen epiduralen Hämatomen assoziiert ist, haben die meisten nationalen Fachgesellschaften einschließlich der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI) Empfehlungen zum Einhalten von Zeitintervallen zwischen dem Zeitpunkt der medikamentösen VTE-Prophylaxe und einer rückenmarknahen Punktion oder Katheterentfernung herausgegeben (DGAI 2014 [38]). Diese Zeitintervalle beruhen auf der Pharmakokinetik der einzelnen Substanzen, wobei für die zur VTE-Prophylaxe verwendeten Dosierungen 2 Halbwertszeiten zugrunde gelegt werden. In den aktualisierten Empfehlungen wird erneut betont, dass die Zeitintervalle bei therapeutischer Dosierung von Antikoagulanzien oder bei Patienten mit einer eingeschränkten Nierenfunktion (Kreatinin clearance < 30 ml/min) auf 4-5 Halbwertszeiten erhöht werden sollen, um dem höheren Blutungsrisiko Rechnung zu tragen [38]. Fallserien zeigen, dass epidurale Hämatome gehäuft bei Patienten auftreten, bei
denen die Empfehlungen der Fachgesellschaften nicht eingehalten werden [215] (Tabelle X):


Tabelle X: Empfohlene Zeitintervalle vor und nach rückenmarknaher Punktion bzw. Katheterentfernung modifiziert nach Waurick et al., 2014 [38]

<table>
<thead>
<tr>
<th>Substanz</th>
<th>Halbwertszeit</th>
<th>Vor Punktion/Katheterentfernung</th>
<th>Nach Punktion/Katheterentfernung</th>
</tr>
</thead>
<tbody>
<tr>
<td>unfractionierte Heparine (Prophylaxe)</td>
<td>1,5-2h</td>
<td>4h</td>
<td>1h</td>
</tr>
<tr>
<td>Unfractionierte Heparine (Therapie)</td>
<td>2-3h</td>
<td>i.v. 4-6h s.c. 8-12h</td>
<td>1h</td>
</tr>
<tr>
<td>Niedermolekulare Heparine (Prophylaxe)</td>
<td>4-6h*</td>
<td>12h</td>
<td>4h</td>
</tr>
<tr>
<td>Niedermolekulare Heparine (Therapie)</td>
<td>24h</td>
<td></td>
<td>4h</td>
</tr>
<tr>
<td>Fondaparinux (1 x 2,5mg/d)</td>
<td>15-20h*</td>
<td>36-42h</td>
<td>6-12h</td>
</tr>
<tr>
<td>Danaparoid (2 x 750I.E./d)</td>
<td>22-24h*</td>
<td>48h</td>
<td>3-4h</td>
</tr>
<tr>
<td>Argatroban (Prophylaxe)**</td>
<td>35-45min</td>
<td>4h</td>
<td>5-7h</td>
</tr>
<tr>
<td>Dabigatran (max. 1 x 150-220mg/d)</td>
<td>14-17h*</td>
<td>28-34h</td>
<td>6h</td>
</tr>
<tr>
<td>Dabigatran (max. 2 x 150mg/d)**</td>
<td>14-17h**</td>
<td>56-85h</td>
<td>6h</td>
</tr>
<tr>
<td>Rivaroxaban (1 x 10mg/d)</td>
<td>11-13h(*)</td>
<td>22-26h</td>
<td>4-5,5h</td>
</tr>
<tr>
<td>Rivaroxaban (2 x 11-13h(*)</td>
<td></td>
<td>44-65 h</td>
<td>4-5,5h</td>
</tr>
<tr>
<td>Substanz</td>
<td>Halbwertszeit</td>
<td>Vor Punktion/ Katheterentfernung</td>
<td>Nach Punktion/ Katheterentfernung</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>15mg/d, 1 x 20mg/d)***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apixaban (2 x 2.5mg/d)</td>
<td>10-15h(*)</td>
<td>26-30h</td>
<td>5-7h</td>
</tr>
<tr>
<td>Apixaban (2 x 5mg/d)***</td>
<td>10-15h(*)</td>
<td>40-75h</td>
<td>5-7h</td>
</tr>
<tr>
<td>Vitamin-K-Antagonisten</td>
<td>Tage</td>
<td>INR &lt; 1,4</td>
<td>Nach Entfernung</td>
</tr>
<tr>
<td>Acetylsalicylsäure (100mg/d)</td>
<td>(biolog.) Lebensdauer der Thrombozyten</td>
<td>Keine</td>
<td>Keine</td>
</tr>
<tr>
<td>Clopidogrel</td>
<td>(biolog.) Lebensdauer der Thrombozyten</td>
<td>7-10 Tage</td>
<td>Nach Entfernung</td>
</tr>
<tr>
<td>Prasugrel</td>
<td>(biolog.) Lebensdauer der Thrombozyten</td>
<td>7-10 Tage</td>
<td>6h nach Entfernung</td>
</tr>
<tr>
<td>Ticagrelor</td>
<td>7-8.5 h (CAVE: aktiver Metabolit 5 d)</td>
<td>5 Tage</td>
<td>6h nach Entfernung</td>
</tr>
<tr>
<td>Dipyridamol</td>
<td>2-10 Tage?</td>
<td>Kontraindikation</td>
<td>5-6h nach Entfernung</td>
</tr>
<tr>
<td>Cilostazol</td>
<td>21h</td>
<td>42h</td>
<td>5h</td>
</tr>
</tbody>
</table>

* CAVE: Halbwertzeit wesentlich von der Nierenfunktion abhängig; (*) = mäßig, *= deutlich
** verlängertes Zeitintervall bei eingeschränkter Leberfunktion
*** individuelle Risiko-Nutzenabwägung
3 Spezielle Empfehlungen

3.1 Operative Medizin

3.1.1 Eingriffe im Kopf- und Halsbereich

Nach Eingriffen an Gesichtsschädel und Hals kann auf eine medikamentöse VTE-Prophylaxe im Regelfall verzichtet werden. ⇦

Bei zusätzlichen Risiken (z.B. ausgedehnte und/oder onkologische Eingriffe) sollte eine medikamentöse VTE-Prophylaxe erfolgen. ↑

Zu Eingriffen am Gesichtsschädel und am Hals konnten keine aussagefähigen Studien gefunden werden (Evidenztabelle 1). Aufgrund des Fehlens aussagekräftiger RCTs sind primär Inzidenzstudien zu betrachten. Die LE-Rate betrug in mehreren Studien zwischen 0,03% und 0,14% [221-225]. Aufgrund dieser Daten erscheint eine regelmäßige Indikation für eine spezielle VTE-Prophylaxe (d.h. medikamentöse und physikalische Maßnahmen) nicht gegeben. Für die individuelle Risikoeinschätzung sollte das Vorliegen dispositioneller Risikofaktoren erfragt und berücksichtigt werden (siehe Tabelle VIII, und Tabelle IX in Abschnitt 2).


3.1.2 Neurochirurgische Eingriffe

Bei Patienten mit Eingriffen am oder Verletzungen des zentralen Nervensystems soll eine physikalische VTE-Prophylaxe durchgeführt werden. ↑↑
Abweichend von den Fachinformationen gibt es Hinweise in der wissenschaftlichen Literatur auf einen zusätzlichen Nutzen, aufgrund derer eine medikamentöse VTE-Prophylaxe nach neurochirurgischen Eingriffen angeendet werden kann. ⇔

Die zur Verfügung stehenden Antikoagulanzen sind allerdings für diese Indikation nicht zugelassen.

Die derzeit nicht zu beziffernde Risikozunahme einer postoperativen Blutung durch die VTE-Prophylaxe sollte bedacht werden. ↑

Sofern eine medikamentöse VTE-Prophylaxe durchgeführt wird, sollte sie erst postoperativ begonnen werden. ↑

(Expertenkonsens)

Die folgenden Ausführungen beziehen sich auf Patienten, bei denen ein operativer Eingriff am Zentralnervensystem (Gehirn, Rückenmark) durchgeführt wird oder bei denen eine Verletzung des ZNS vorliegt. Die in der Literatur für diese Patientenpopulation angegebenen Häufigkeiten tiefer Beinvenenthrombosen (TVT) ohne prophylaktische Maßnahmen schwanken zwischen 15 und 45 % (Übersichten in [8; 228]). Die große Spannweite erklärt sich durch die inhomogene Zusammensetzung der untersuchten Patientengruppen und unterschiedliche Nachweismethoden der TVT. Genauere Angaben liegen für das Schädelhirntrauma vor, bei dem in ca. 20 % der Fälle mit einer TVT gerechnet werden muss, unabhängig davon, ob ein größerer neurochirurgischer Eingriff erforderlich ist [16]. Nach Kraniotomien wird die Häufigkeit mit 25% beziffert [229]. Bei Vorliegen von Hirntumoren werden in einzelnen Studien [230-232] extrem hohe Werte über 70 % für einige Subgruppen berichtet. Auch wenn diese Ergebnisse aufgrund der kleinen Fallzahlen sicherlich nicht zu verallgemeinern sind, so lässt sich doch vermuten, dass es unter neurochirurgischen Patienten Hochrisikopatienten gibt, insbesondere wenn weitere prädisponierende Faktoren, wie eine Parese der unteren Extremität, vorliegen. Das Auftreten einer Lungenembolie bei neurochirurgischen Patienten wird mit einer Häufigkeit von 1,4 bis 5 % beziffert mit einer begleitenden Letalität von 9 bis 50 %. Bei Hochrisikopatienten kann die Embolierate auf 3 bis 10 % steigen [228; 230-232]. Diese Zahlen verdeutlichen die Notwendigkeit einer Thromboembolieprophylaxe bei neurochirurgischen Patienten.

Mehrere Studien haben den Nutzen physikalischer Maßnahmen nachweisen können. Skillman und Mitarbeiter [233] fanden in einer prospektiven, randomisierten Studie eine Reduktion der TVT von 25 % im unbehandelten Studienarm auf 8,5 % beim Einsatz der intermittierenden pneumatischen Kompression (IPK) (p < 0,05). Ähnliches berichten Turpie und Mitarbeiter bei 128 Patienten mit Hirnblutung und Hirntumor-Operationen [234]. In dieser Studie konnte die TVT-Rate von 19,1 auf 1,5 % (p<0,01) durch IPK gesenkt werden. Die gleiche Arbeitsgruppe führte noch e-
ne randomisierte Studie mit 3 Armen durch [235], bei denen das Tragen medizinischer Thromboseprophylaxe-Strümpfe (MTPS) sowie MTPS + IPK in Kombination mit den Ergebnissen ohne jegliche Prophylaxe verglichen wurden. Die TVT-Häufigkeiten betrugen 8,8%, 9% und 16% (p < 0,05). In einer neueren kontrolliert-randomisierten Studie bei kraniotomierten Patienten oder Patienten mit spontanen intrakraniellen Blutungen konnte Sobieraj-Teague und Mitarbeiter [236] eine Senkung der Rate venöser Thrombosen von 18,7% auf 4% (p=0,008) durch den Einsatz einer an der Wade angebrachten, tragbaren Peristaltikpumpe (Unterschenkel-Venenpumpe) zeigen. Der Effekt ist ausgeprägter bei asymptomatischen Thrombosen. Ein Nachteil der Studie ist, dass weitere Maßnahmen zur VTE-Prophylaxe nicht einheitlich angewandt wurden und die Studienarme sich hierin auch unterscheiden.

Collen und Mitarbeiter [237] fanden in ihrer Metaanalyse aus 30 Publikationen bei 7.779 Patienten, die einer neurochirurgischen Operation unterzogen wurden, dass IPK zu einer signifikanten Reduktion tiefer Venenthrombosen (RR 0,41, KI 0,21 – 0,78) führt. Ein Vergleich IPK versus MTPS ließ keinen signifikanten Unterschied erkennen. Zu einem ähnlichen Ergebnis kommen Salmaggi und Mitarbeiter [238] in ihrem systematischen Review an 1.932, hauptsächlich neuroonkologischen Patienten (MTPS vs. Placebo RR asymptomatischer TVT: 0,41 KI 0,17-0,99, RR IKP vs Placebo RR asymptomatischer TVT 0,24 KI 0,08-0,75)

Ein Nutzen für mechanische Maßnahmen zur Thromboseprophylaxe ist somit durch mehrere prospektive, randomisierte Studien und zwei Metaanalysen belegt, so dass eine starke Empfehlung hierfür ausgesprochen werden kann. Einschränkungen ergeben sich höchstens bei Patienten mit Schädelhirntrauma, die eine begleitende Verletzung der unteren Extremitäten haben.


Zum Vergleich medikamentöse vs. mechanische Prophylaxe gibt es mehrere Studien, die zu unterschiedlichen Ergebnissen kommen. Agnelli und Mitarbeiter [229] fanden bei Gabe des NMH Enoxaparin und zusätzlicher MTPS-Prophylaxe eine TVT-Häufigkeit von 17% gegenüber 35% (p<0,05) bei alleiniger MTPS-Anwendung. Der positive Effekt galt auch für proximale TVT (5% vs 13%, p <0,05), die mit einer erhöhten Emboliegefahr assoziiert sind. Gemessen an der Gesamtrate an TVT sind die Ergebnisse von Nurmohamed und Mitarbeitern [240] damit vergleichbar. Unter dem NMH Nadroparin plus MTPS fand sich eine Häufigkeit von 13,7% vs 20,9% (p<0,05) bei alleiniger MTPS-Anwendung. Die Rate an proximalen TVT unterscheidet sich aber nicht signifikant (6,9% vs. 11,5%). Kurtoglu und Mitarbeiter [241] sehen für
alle TVT-Lokalisationen keinen signifikanten Unterschied beim Vergleich von IPK und Enoxaparin (6,6% vs 5,0%). Beim Vergleich der drei analysierten Studien fällt auf, dass der NMH-Effekt umso ausgeprägter ist, je höher die TVT-Rate in der Kontrollgruppe mit mechanischer Prophylaxe ist. Möglicherweise ist dies ein Hinweis darauf, dass Hochrisikopatienten von der NMH-Gabe profitieren, Patienten mit einem geringen Risiko hingegen nicht. Beide Metaanalysen [237; 238], die größtenteils auf den gleichen Daten beruhen, kommen allerdings zu einem signifikanten Wirksamkeitsnachweis für NMH (Collen und Mitarbeiter: RR 0,60 KI 0,44-0,81, Salmaggi und Mitarbeiter; RR 0,57 KI 0,39-0,82).

Zwischen niedermolekularem Heparin und unfractioniertem Heparin gibt es keinen statistisch signifikanten Unterschied in der TVT-Häufigkeit [237; 238; 242; 243].


Wie eine Umfrage in 34 deutschen neurochirurgischen Zentren ergab, wird bei 88 - 97% der Patienten, die einer Kraniotomie unterzogen werden, eine postoperative Prophylaxe durchgeführt [247]. Aufgrund der geschilderten Datenlage wurde im Rahmen des Abstimmungsprozesses bei der Leitlinienerstellung innerhalb der Deutschen Gesellschaft für Neurochirurgie die postoperative, medikamentöse Thromboembolieprophylaxe als offene Empfehlung ausgesprochen.

Die Aussagen der Studien zur Thromboembolieprophylaxe bei neurochirurgischen Patienten müssen vorsichtig interpretiert werden, da es sich um inhomogene Patientengruppen handelt. Die TVT-Häufigkeit bei vergleichbarem Therapieregime ist

Die fehlende Zulassung für Verletzungen und operative Eingriffe am Zentralnervensystem, die teilweise sogar als Kontraindikationen genannt werden, bedingt kein Verbot der Anwendung von UFH und NMH. Bei der Anwendung müssen aber die Kriterien des so genannten „off label use“ berücksichtigt werden (siehe Kap. 3.8)

### 3.1.3 Herz-, thorax- und gefäßchirurgische Eingriffe

#### 3.1.3.1 Herz- und thoraxchirurgische Eingriffe

<table>
<thead>
<tr>
<th>Patienten mit mittleren und großen thoraxchirurgischen Eingriffen sollen eine medikamentöse VTE-Prophylaxe mit NMH erhalten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Expertenkonsens)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Patienten mit mittleren und großen kardiochirurgischen Eingriffen, die nicht therapeutisch antikoaguliert werden, sollen eine postoperative medikamentöse VTE-Prophylaxe mit UFH oder NMH erhalten.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Expertenkonsens)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bei Patienten nach Eingriffen mit Herzlungenmaschine und/oder erhöhtem Blutungsrisiko kann in der frühen postoperativen Phase die medikamentöse VTE-Prophylaxe mit UFH wg. der besseren Antagonisierbarkeit vorteilhaft sein.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Expertenkonsens)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bei herzchirurgischen Patienten, die eine medikamentöse VTE-Prophylaxe mit UFH erhalten, soll eine regelmäßige (2-3 mal/Woche) Kontrolle der Thrombozytenzahlen erfolgen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Expertenkonsens)</td>
</tr>
</tbody>
</table>

3.1.3.2 Herzchirurgie

Die sonografische Inzidenz von TVT nach koronaren Bypass-Operationen wurde mit 22%, davon 3% proximal, die Inzidenz von LE mit 0,6-9,5% ermittelt [248-251]. In den englischen, evidenzbasierten Leitlinien wird das VTE-Risiko in der Herzchirurgie ohne Prophylaxe auf 14% (95% CI 7-24%) geschätzt (NICE 2007, 2010 [12; 35]).

Thromboembolische Komplikationen nach Eingriffen mit und ohne Herz-Lungenmaschine waren in einer Beobachtungsstudie mit historischer Vergleichsgruppe vergleichbar [252].


Bei elektiven Herzoperationen mit Herz-Lungen-Maschine sollte eine präoperative Antikoagulation mit niedermolekularem Heparin oder anderen neuen Antikoagulanzien auf unfraktioniertes Heparin umgestellt werden.


Spezielle Vorgehensweisen sind erforderlich, wenn nach einem herzchirurgischen Eingriff eine HIT eingetreten ist oder ein solcher Eingriff bei einem Patienten mit einer HIT in der Anamnese notwendig wird [260] (siehe auch Kap. 2.6.2). Nach herzchirurgischen Eingriffen mit Herz-Lungen-Maschine (große Fremdflächen) und Antikoagulation mit UFH beträgt das Risiko einer HIT II ca. 3% [260]. Daher soll in der postoperativen Phase bei VTE-Prophylaxe insbesondere mit UFH eine regelmäßige Kontrolle der Thrombozytenzahl (2-3 x pro Woche) durchgeführt werden,
um eine HIT II frühzeitig zu diagnostizieren und auf ein alternatives Antikoagulans wechseln zu können.

Die Ergebnisse zur physikalischen Prophylaxe sind widersprüchlich. Dennoch werden aufgrund der relativ hohen LE-Raten in der Bypass-Chirurgie physikalische und medikamentöse Prophylaxemaßnahmen als erforderlich erachtet [261]. Die verfügbare Evidenz (Evidenztabelle 5 und folgende) beruht auf drei RCTs [262-264], die aufgrund der geringen Patientenzahl und mangelhaften Durchführungsqualität jedoch eingeschränkt zu beurteilen sind.


Eine Anfrage bei den 77 deutschen herzchirurgischen Einrichtungen ergab, dass nach herzchirurgischen Eingriffen sowohl NMH als auch UFH zur postoperativen VTE-Prophylaxe verwendet werden. Außerdem werden Basismaßnahmen zur VTE-Prophylaxe praktisch bei allen Patienten durchgeführt und zusätzliche physikalische Maßnahmen nur von circa der Hälfte der Kliniken, was die eingeschränkte Datenlage widerspiegelt.

Patienten nach Herzklappenoperationen sollen für die Zeit der Immobilisation eine medikamentöse VTE-Prophylaxe erhalten (z.B. nach Implantation einer biologischen Klappe und bestehendem Sinusrhythmus), sofern sie nicht eine therapeutische Antikoagulation erhalten (z.B. mechanische Herzkappen, siehe ESC-Guidelines 2007 [18]).


Nach mittelgroßen und größeren herzchirurgischen Eingriffen soll eine VTE-Prophylaxe mit NMH oder UFH durchgeführt werden. Derzeit gibt es keine prospektiv randomisierten Studien, die das NMH- bzw. UFH-Regime miteinander vergleichen. Über die postoperative Anwendung von NMH gibt es lediglich einzelne Arbeiten, die zeigen, dass NMH als postoperative VTE-Prophylaxe mit guten Ergebnissen eingesetzt werden kann und darüber hinaus die Rate an HIT II geringer ist als bei UFH.
3.1.3.3 Thoraxchirurgie

Nur wenige Studien haben allein thoraxchirurgische Eingriffe untersucht (Cade et al. in Evidenztabelle 8). Die TVT-Rate (symptomatisch oder asymptomatisch) nach Lobektomie und Pneumonektomie beträgt 9-18%; die Inzidenz der LE nach Thorakotomie beträgt 3-5%, der tödlichen LE 0,2-1% (NICE 2007) [265-268].

Nach Lungenresektionen bedeutet das reduzierte Gefäßbett bei Auftreten einer Embolie ein sehr viel höheres letales Risiko.

Nach einer Thorakotomie ist unabhängig vom durchgeführten Eingriff die Indikation zur VTE-Prophylaxe gegeben.

Hingegen besteht in der Video-assistierten thorakoskopischen Chirurgie (VATS = video-assisted thoracoscopic surgery) bei jüngeren Patienten aufgrund der schnelleren Mobilisierung nur ein geringes VTE-Risiko (Bsp.: diagnostische Thorakoskopie, unkomplizierte Pleurektomie beim Pneumothorax, endoskopische transthorakale Sympathektomie bei Hyperhidrosis). Eine medikamentöse Prophylaxe ist hier ohne zusätzliche patientenbedingte Risikofaktoren nicht erforderlich.

VATS-Eingriffe mit Lungenresektion oder bei anderen Indikationen (Bsp. Pleuraempyem, Mediastinaleingriffe, u.a.) sind als mittlere bzw. große thoraxchirurgische Operationen zu werten mit entsprechender Indikation zur VTE-Prophylaxe.


3.1.3.4 Gefäßchirurgische Eingriffe

Alle Patienten mit gefäßchirurgischen Eingriffen sollten Basismaßnahmen zur VTE-Prophylaxe erhalten. ↑

(Expertenkonsens)

Patienten mit Eingriffen an den Arterien der unteren Extremitäten sollten eine VTE-Prophylaxe mit UFH oder NMH erhalten, sofern postoperativ keine chirurgisch indizierte, therapeutische Antikoagulation durchgeführt wird. 

Die weiterführende medikamentöse Behandlung richtet sich nach Art und Prognose der Intervention und ist unabhängig von der perioperativen VTE Prophylaxe.

Thrombozytenaggregationshemmer haben untergeordneten Stellenwert in der Prophylaxe der VTE, sollten aber bei arteriellen Erkrankungen aufgrund der hierdurch gegebenen Indikation weiter gegeben werden.

Bei Patienten ohne zusätzliche dispositionelle Risikofaktoren kann bei Eingriffen am oberflächlichen Venensystem (Varizenchirurgie) auf eine medikamentöse VTE Prophylaxe verzichtet werden.

Bei diesen Patienten sollten Basismaßnahmen und postoperative Kompressionstherapie des operierten Beins eingesetzt werden.

(Expertenkonsens)


Bei peripheren Gefäßrekonstruktionen liegen die TVT-Raten deutlich niedriger ([269]; siehe auch Evidenztabelle 6 und folgende), in einer prospektiven Untersuchung an Patienten mit infraringuinaler Revaskularisation sogar nur bei 2,8% [270].

Bei der Anwendung physikalischer Maßnahmen muss die Durchblutungssituation der Extremitäten, auch nach Revaskularisation, berücksichtigt werden. Sie sollten bei Vorliegen einer arteriellen Verschlusskrankheit nur nach Beurteilung der Perfusionssparameter eingesetzt werden. Dopplersonographisch ermittelte Knöcheldrücke unter 70mmHg stellen eine Kontraindikation für Kompressionsverbände oder MTPS dar.


### 3.1.4 Eingriffe im Bauch- oder Beckenbereich

Bezüglich der Thromboembolie-Prophylaxe bei Eingriffen im Bauch- und Beckenbereich werden im internationalen Schrifttum in der Regel die einzelnen operativen Spezialdisziplinen gemeinsam betrachtet, da in RCTs keine Differenz des VTE-Risikos gefunden wurde, und nur die Zusammenfassung aller RCTs eine für die Beurteilung der Effektivität ausreichende Evidenz ergibt.

Im Folgenden werden deshalb Allgemein- und Viszeralchirurgie („General Surgery“), abdominelle Gefäßchirurgie, operative Gynäkologie und Urologie als gemeinsame anatomische Region betrachtet.

<table>
<thead>
<tr>
<th>Das expositionelle VTE-Risiko bei Patienten mit viszeralen, gefäßchirurgischen, gynäkologischen und urologischen Eingriffen im Bauch- und Beckenbereich wird als vergleichbar angesehen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die folgenden Empfehlungen gelten daher im Grundsatz für alle Eingriffe im Bauch- und Beckenbereich.</td>
</tr>
</tbody>
</table>

(Expertenkonsens)

Bei Patienten mit niedrigem eingriffsbedingten expositionellen und fehlendem oder geringem dispositionellen VTE-Risiko (Tabelle IX) sollte keine medikamentöse Prophylaxe verabreicht werden. 

†
### Patienten mit mittlerem VTE-Risiko (mittlere Eingriffe oder kleinere Eingriffe mit zusätzlichen dispositionellen Risikofaktoren (Tabelle VII) sollen eine medikamentöse VTE-Prophylaxe mit Heparinen erhalten.

Zusätzlich können diese Patienten eine physikalische Prophylaxe (IPK/MTPS) erhalten.

### Patienten mit hohem VTE-Risiko (große Eingriffe oder mittlere Eingriffe mit zusätzlichen dispositionellen Risikofaktoren) sollen eine medikamentöse VTE-Prophylaxe mit NMH erhalten.

Alternativ kann Fondaparinux verwendet werden.

Zusätzlich können diese Patienten eine physikalische Prophylaxe (IPK/MTPS) erhalten.

### Für laparoskopische Eingriffe und Operationen mit minimal invasivem Zugang (minimal access surgery) gelten die gleichen Indikationen zur VTE-Prophylaxe wie bei offenen Eingriffen im Bauch- und Beckenbereich.

(Expertenkonsens)

### Die Dauer der medikamentösen VTE-Prophylaxe beträgt in der Regel 7 Tage. Sie sollte eingehalten werden unabhängig davon, ob der Patient noch stationär oder schon ambulant geführt wird.

(Expertenkonsens)

### Bei fortdauerndem VTE-Risiko (z.B. prolongierte Immobilisation, Infektion) sollte die VTE-Prophylaxe fortgeführt werden.
Patienten mit onkologischen Eingriffen sollen eine verlängerte VTE-Prophylaxe für 4 Wochen erhalten. ►►
(Expertenkonsens)

3.1.4.1 Allgemein- und Viszeralchirurgie („General Surgery“)


Aus zahlreichen Kohortenstudien und den Kontrollarmen der früheren placebokontrollierten RCTs ist bekannt, dass die TVT-Rate nach großen abdominellen Eingriffen zwischen 15% und 40% liegt [273; 274]. Im Vergleich zu keiner Prophylaxe konnten in mehreren Meta-Analysen eindeutige Vorteile sowohl für die physikalische als auch für die medikamentöse Prophylaxe gesichert werden [94; 161; 162; 198; 273; 275; 276]. Das Risiko für VTE-Komplikationen kann nach diesen Daten durch eine physikalische und medikamentöse Prophylaxe jeweils mehr als halbiert werden, so dass die TVT-Rate insgesamt auf unter 5% gesenkt werden kann (Evidenztabelle 9 und ff.). Die Daten dreierarmiger RCTs deuten daraufhin, dass die Kombination physikalischer und medikamentöser Maßnahmen einer alleinigen physikalischen oder medikamentösen VTE-Prophylaxe tendenziell überlegen ist [277; 278]. Die klinische Erfahrung zeigt, dass Patienten mit hohem VTE-Risiko und großen Eingriffen im Bauch- und Beckenbereich oft schwerer zu mobilisieren sind als solche mit orthopädisch-unfallchirurgischen Eingriffen.


Bei präoperativem Beginn der Prophylaxe mit einer höheren NMH Dosierung sollte die erste Dosis am Abend vor der Operation verabreicht werden. Eine VTE-Prophylaxe mit Fondaparinux wird grundsätzlich postoperativ begonnen, jedoch gewinnt
der postoperative Prophylaxebeginn auch mit NMH angesichts der klinischer Erfahrungen in den USA und der zunehmenden Häufigkeit des Beginns der Hospitalisierung am Morgen des Operationstags auch in Deutschland größere Bedeutung.


Zum Beginn der Prophylaxe und zur Notwendigkeit einer poststationär fortzuführenden Prophylaxe siehe Kap. 2.7. Insbesondere Patienten mit onkologischen Eingriffen sollten eine prolongierte Prophylaxe erhalten (Evidenztablelle 15). Eine Meta-Analyse dieser drei verfügbaren Studien fand die VTE-Gesamtrate signifikant von 14% auf 6% reduziert [283]. Auch die proximale TVT-Rate war signifikant reduziert (5% vs. 1%).


Tumoren kann die übliche Dauer der Prophylaxe von 7-10 Tagen als ausreichend angesehen werden. (ASCO 2013 [37])

Im Bereich der Bauchwand erfordern die Versorgung mittlerer und großer Bauchwand(narben)hernien und Reduktionsplastiken der Bauchdecke nach bariatrischer Chirurgie die gleiche VTE-Prophylaxe wie Eingriffe an den viszeralen Organen und Gefäßen. Diese Empfehlung basiert auf Expertenkonsens, gesonderte Studienergebnisse konnten nicht identifiziert werden.

3.1.4.2 Gefäßchirurgische Eingriffe im Bauch-Beckenbereich


3.1.4.3 Gynäkologie: Eingriffe im Bauch-Beckenbereich

Für Patientinnen mit gynäkologischen operativen Eingriffen gelten im Grundsatz die gleichen Empfehlungen wie für Patienten mit anderen (viszeralchirurgischen, gefäßchirurgischen, urologischen) operativen Eingriffen im Bauch- und Beckenbereich.
Patientinnen mit großen gynäkologischen operativen Eingriffen sollen eine medikamentöse VTE-Prophylaxe neben Basismaßnahmen (Frühmobilitysation, Eigenaktivierung der Wadenmuskulatur) erhalten. ☝️

Zusätzlich können diese Patientinnen eine physikalische Prophylaxe (IPK/MTPS) erhalten. ⇔

Für laparoskopische Eingriffe und Operationen mit minimal invasivem Zugang (minimal access surgery) gelten die gleichen Indikationen zur VTE-Prophylaxe wie bei offenen Eingriffen im Bauch- und Beckenbereich.

(Expertenkonsens)

Patientinnen mit diagnostischen laparoskopischen Eingriffen und dispositionellen Risikofaktoren sollen eine medikamentöse VTE-Prophylaxe erhalten. ☝️

Die medikamentöse Prophylaxe mit NMH kann bei Patientinnen mit elektriven Eingriffen am Vorabend der Operation oder postoperativ begonnen werden. ⇔

Bei Patientinnen mit großen gynäkologischen operativen Eingriffen beträgt die Prävalenz der tiefen Venenthrombose in einer Meta-Analyse gemessen mit dem Radiofibrinogentest zwischen 15% bis 40% [8; 15; 288].


Im Gegensatz zu Nordamerika wird die medikamentöse Thromboseprophylaxe in Europa üblicherweise präoperativ begonnen [293]. Amerikanische Erfahrungen haben aber gezeigt, dass die postoperative Gabe von NMH bezüglich einer VTE gegenüber der präoperativen Gabe ohne Nachteile ist.

In der Gynäkologie werden Patientinnen postoperativ oft früh entlassen. Bei Fortbestehen relevanter Risikofaktoren für venöse Thromboembolien nach Krankenhausentlassung sollte eine poststationäre Prophylaxe in Erwägung gezogen werden. Für große Malignomoperationen der Viszeralchirurgie haben klinische Studien...

3.1.4.4  **Urologie: Eingriffe im Bauch-Beckenbereich**


Entsprechend der Schwere und Lokalisation urologischer Eingriffe sind die oben dargestellten Prinzipien der VTE-Prophylaxe bei Eingriffen im Bauch-Beckenbereich übertragbar. Spezielle Empfehlungen finden sich im Kapitel 3.6 „Urologie“.

3.1.5  **Operationen und Verletzungen an Gelenken, Knochen und Weichteilen der oberen Extremität**

Nach Operationen an der oberen Extremität sollte in der Regel keine (über die Basismaßnahmen hinaus gehende) VTE-Prophylaxe erfolgen. ▲

(Expertenkonsens)

Nach Implantation von Schultergelenkprothesen kann bei Trauma, bei Karzinomerkrankungen oder bei älteren Patienten oder wenn zusätzlich dispositionelle Faktoren mit hohem Risiko vorliegen, eine medikamentöse VTE-Prophylaxe erfolgen. ⇓

Die Inzidenz thromboembolischer Komplikationen nach Operationen und Verletzungen an Gelenken, Knochen und Weichteilen der oberen Extremität wurde bisher überwiegend retrospektiv untersucht.

Generell bestehen nach operativen Eingriffen an der Schulter und der oberen Extremität ein niedriges TTV-Risiko und ein niedriges Risiko für tödliche Lungenembolien.

Eine retrospektive Datenbankanalyse zeigte für Patienten nach Schultergelenkprothesen eine TTV-Inzidenz von 0,5% und eine Inzidenz von Lungenembolien von 0,23% [294]. In der Analyse einer Datenbank des britischen National Health Service (NHS) lag die Häufigkeit für eine TTV bei 0% und für eine Lungenembolie bei 0,2% [295]. Systematische Übersichtsarbeiten bestätigen diese Befunde [296; 297]. In ei-
ner weiteren retrospektiven Kohortenstudie mit 2574 eingeschlossenen Patienten lag die Inzidenz für eine TVT bei 0,51 (95% CI 0,23-0,78) und für eine Lungenembolie bei 0,54% (95% CI 0,26-0,83) [298]. Das Risiko für VTE war in dieser Untersuchung bei Arthroplastiken nach Trauma doppelt so hoch wie nach elektiven Eingriffen (1,7% vs. 0,8%, p=0,055). In anderen Studien wurden als Risikofaktoren neben einer Fraktur als Ursache für die Prothesenimplantation ein hohes Alter und eine gleichzeitige Karzinomerkran-kung identifiziert [294].

Die VTE-Inzidenz nach Operation von proximalen Humerusfrakturen wird mit 0,50% bis 0,65% angegeben [295; 296].

Nach Implantation von Ellenbogengelenkprothesen traten in retrospektiven Studien in 0,26 bzw. 0,29% der Fälle VTE auf [296; 299].

Die VTE-Inzidenz nach arthroskopischen Operationen an der Schulter wird in einer systematischen Übersichtsarbeit mit 0,038% (bei 92.440 Eingriffen) angegeben [296], in der Analyse der NHS-Datenbank noch niedriger (<0,01%) [295].


Die Durchführung einer routinemäßigen VTE-Prophylaxe, die über die Basismaßnahmen (z.B. Frühmobilisation) hinausgeht, erscheint demnach nicht erforderlich. Bei Patienten mit der Implantation von Schultergelenkprothesen kann eine medikamentöse Thromboseprophylaxe erwogen werden, wenn zusätzlich dispositionelle oder expositionelle Faktoren mit hohem/mittlerem Risiko (wie Trauma, Karzinom und höheres Lebensalter) hinzu kommen (siehe Kapitel 2.2).

3.1.6 Operationen und Verletzungen an Gelenken, Knochen und Weichteilen der unteren Extremität

3.1.6.1 Hüftgelenkendoprothetik und hüftgelenknahe Frakturen und Osteotomien

Patienten mit großen orthopädischen oder unfallchirurgischen Eingriffen an der Hüfte sollen neben Basismaßnahmen eine medikamentöse VTE-Prophylaxe erhalten. ⬆️
Bei elektiven Hüftgelenkersatzoperationen soll die medikamentöse VTE-Prophylaxe mit niedermolekularen Heparinen (NMH), Fondaparinux oder Nicht-Vitamin-K abhängigen oralen Antikoagulanzien (NOAK) erfolgen. ⇑⇑

Bei hüftgelenknahen Frakturen und Osteotomien soll die medikamentöse VTE-Prophylaxe mit NMH oder Fondaparinux erfolgen. ⇑⇑

Bei früher aufgetretener Heparinunverträglichkeit sollen bei elektiven Hüftgelenkersatzoperationen Fondaparinux oder NOAK, bei hüftgelenknahen Frakturen und Osteotomien Fondaparinux eingesetzt werden. ⇑⇑

Zusätzlich zur medikamentösen Prophylaxe können physikalische Maßnahmen - medizinische Thromboseprophylaxestrümpfe (MTPS), intermittierende pneumatische Kompression (IPK) - eingesetzt werden. ⇔

Bei Kontraindikationen gegen eine medikamentöse Prophylaxe soll eine intermittierende pneumatische Kompression eingesetzt werden. ⇑⇑

Die medikamentöse Prophylaxe mit NMH kann bei elektiven Patienten am Vorabend der Operation begonnen werden. ⇔

Die Erstgabe von Fondaparinux soll frühestens 6 Stunden postoperativ erfolgen. ⇑⇑

Die Erstgabe von Dabigatranetexilat soll mit der Hälfte der im Weiteren verwendeten Tagesdosis 1-4 Stunden postoperativ begonnen werden. ⇑⇑

Die Erstgabe von Rivaroxaban soll 6-10 Stunden postoperativ erfolgen. ⇑⇑

Die Erstgabe von Apixaban soll 12-24 Stunden postoperativ erfolgen. ⇑⇑

Bei Patienten mit Frakturen, welche konservativ frühfunktionell behandelt werden, kann aufgrund fehlender Daten keine generelle Empfehlung zur VTE-Prophylaxe gegeben werden.

Bei Immobilisation soll eine medikamentöse VTE-Prophylaxe erfolgen. ⇑⇑

Die medikamentöse Prophylaxe soll 28 - 35 Tage durchgeführt werden. ⇑⇑

Eingriffe am Hüftgelenk haben ohne VTE-Prophylaxe ein hohes VTE-Risiko (siehe Tabelle VIII in Abschnitt 2 dieser Leitlinie). Hierbei besteht kein klinisch relevanter Unterschied zwischen elektiven und frakturbedingten Eingriffen [160]. Die Gesamtrate an Thrombosen liegt ohne prophylaktische Maßnahmen bei bis zu 60% [160; 162]. Selbst unter der Anwendung medikamentöser und physikalischer Prophylaxemaßnahmen liegt die Rate asymptomaticer distaler Thrombosen bei 10-20%,
asymptomatischer proximaler Thrombosen bei 5-10%, symptomatischer Thrombosen bei 2-5%, die Rate von Lungenembolien bei ca. 0,2% und die Rate letaler LE bei ca. 0,1% [300].

Die Patienten dieser Gruppe sind grundsätzlich der Hochrisikogruppe zuzuordnen [8-10]. Daher ist eine weitere Stratifikierung anhand von Lebensalter, Komorbidität und anderen Risikofaktoren ohne Relevanz für die VTE-Prophylaxe.


Es ist erwiesen, dass eine medikamentöse Prophylaxe wie auch eine physikalische Prophylaxe besser als keine Prophylaxe sind (Evidenztabelle 17 und Evidenztabelle 19) [160].

Die oralen Vitamin-K-Antagonisten scheinen den NMH unterlegen zu sein, sowohl in Bezug auf die Thromboseraten als auch auf die Blutungskomplikationen (Evidenztabelle 21) und werden deshalb nicht empfohlen. In der SACRE-Studie wurde die VTE-Prophylaxe drei Tage nach Hüftgelenkarthroplastik oder Alloarthroplastik des Hüftgelenkes entweder mit NMH oder Warfarin fortgeführt [303]. Hierbei fand sich kein Unterschied in den TVT-Raten, aber ein Vorteil der NMH in Bezug auf Blutungskomplikationen (1,4% vs. 5,5%).

Vier RCTs verglichen Fondaparinux mit NMH (Evidenztabelle 22), wobei sich eine etwa auf die Hälfte reduzierte phlebographische VTE-Rate unter Fondaparinux nachweisen ließ [132]. Dieser Effekt war konsistent in den Studien unabhängig von der Endpunktdefinition nachweisbar [304]. Allerdings haben einige Experten Bedenken gegen die klinischen Schlussfolgerungen aus diesen Studien geäußert aufgrund folgender Aspekte: die geringe Adhärenz zum Studienprotokoll in einer der Studien im Vergleichsarm (erst postoperativer Beginn mit Enoxaparin), die erhöhte Blutungsrate unter Fondaparinux.

Wegen des Blutungsrisikos darf Fondaparinux frühestens 6 Stunden nach der Operation gegeben werden und Patienten mit eingeschränkter Nierenfunktion (Kreatinin-Clearance im Bereich 20-50ml/min) sollen einmal täglich 1,5 mg anstatt 2,5 mg Fondaparinux erhalten. Wird bei Patienten mit Frakturen wegen eines verlängerten Intervalls bis zur Operation ein präoperativer Beginn der VTE-Prophylaxe als notwendig erachtet, sollen NMH gegeben werden.

Bei Patienten mit elektiven Hüftgelenkersatzoperationen haben große Phase III Studien die Wirksamkeit und Sicherheit einer etwa 5-wöchigen postoperativ begonnenen Prophylaxe mit Dabigatranetexilat, Rivaroxaban oder Apixaban im Vergleich zu präoperativ begonnenem Enoxaparin belegt [23; 25; 29; 305].


Für Rivaroxaban (10 mg) wurde eine signifikante Absenkung der VTE-Gesamtrate von 3,7 % auf 1,1 % gegenüber Enoxaparin ohne signifikante Zunahme von Blutungskomplikationen ermittelt. Zusätzlich wurde die Notwendigkeit einer prolongierten VTE-Prophylaxe für Patienten mit Hüftgelenkersatz in einer weiteren Studie bestätigt [29]. In dieser Studie wurde eine zweiwöchige Prophylaxe mit Enoxaparin mit der Gabe von Rivaroxaban für fünf Wochen verglichen, was zu einer signifikanten Absenkung der VTE-Gesamtrate von 9,3 % auf 2,0 % führte (Evidenztabelle 76). Auch die symptomatischen Ereignisse traten unter Rivaroxaban vermindert auf.
Dosisempfehlung ist mit einmal täglich 10 mg für alle Patienten gleich. Der Einsatz von Rivaroxaban wurde auch in einem Technology Appraisal Report als valide Option der VTE-Prophylaxe empfohlen [34].

Für Apixaban (2-mal täglich 2,5mg) wurde in einer doppelblinden randomisierten Studie mit einer Gabe für 32 bis 38 Tage postoperativ im Vergleich zu Enoxaparin in Standarddosis eine vergleichbare Rate an Blutungskomplikationen (0,7 vs. 0,8%) beobachtet. [305]. Gleichzeitig war die Rate an Thromboembolischen Komplikationen für den zusammengesetzten Ergebnisparameter aus phlebografisch nachgewiesener TVT plus nicht-tödlicher Lungenembolie plus Tod während der Prophylaxephase für Apixaban signifikant niedriger (1,4 vs. 3,9%) ebenso wie die Summe aus proximaler TVT plus nicht-tödlicher Lungenembolie. Keine signifikanten Unterschiede wurden für die Rate an symptomatischer TVT und andere nicht zusammengefasste Ergebnisparameter festgestellt (siehe Lassen 2010 [305] und Evidenztablellle 79). Der Einsatz von Apixaban wurde auch in einem Technology Appraisal Report als valide Option der VTE-Prophylaxe empfohlen [40]. Das Institut für Qualität und Wirtschaftlichkeit Im Gesundheitswesen (IQWiG) sieht für Patienten mit elektiver Hüftgelenkersatzoperation einen Beleg für einen Zusatznutzen (Ausmaß gering) von Apixaban gegenüber Enoxaparin [41].


Intermittierende pneumatische Kompressionsmaßnahmen (IPK, Fußpumpen) sind bei Kontraindikationen zur medikamentösen Prophylaxe (z.B. erhöhtes Blutungsrisiko) eine wirksame Alternative. Daten aus mehreren RCTs zeigen eine vergleichbare Wirksamkeit wie bei medikamentöser Prophylaxe (Evidenztablelle 18, Evidenztablelle 79). Allerdings ist anzunehmen, dass die Adhärenz der Patienten zur Prophylaxestrategie bei Anwendung der IPK geringer ist (eingeschränkte Mobilität durch Notwendigkeit die Pumpe mitzuführen, Missemfindungen im Bereich der Manschetten an der Wade bei Daueranwendung, aufwändigere Applikation u. a.).

Andere als die beschriebenen Prophylaxemaßnahmen sind nicht ausreichend gesichert.

Aus Studiendaten ist kein eindeutiger Vorteil eines präoperativen Beginns der medi-

Die medikamentöse VTE-Prophylaxe soll über die Entlassung aus der stationären Behandlung hinaus bis 28-35 Tage nach der Operation fortgeführt werden [310] (s. Kapitel 2.7.2). Bei prolongierter Prophylaxe mit NMH oder Fondaparinux (über den 11. Tag hinaus) lassen sich phlebographisch nachgewiesene und auch symptomatische VTE reduzieren (RR 0,41 bzw. 0,36). Für Rivaroxaban konnte durch die prolongierte Gabe (im Vergleich zu Plazebo) die aggregierte Komplikationsrate (phlebographisch nachgewiesene TVT, nicht-tödliche Lungenembolie und Gesamtsterblichkeit während der Behandlung) von 9,3 auf 2,0% signifikant reduziert werden, ohne dass es zu vermehrten Blutungskomplikationen gekommen wäre [29]. Gleiches gilt für Dabigatran und Apixaban bei Vergleich der prolongierten Gabe gegen die prolongierte Gabe von Enoxaparin [305; 311] (siehe Evidenztabelle 25 und Evidenztabelle 79).

Anderson et al [312] verglichen eine prolongierte medikamentöse Prophylaxe mit Acetylsalicylsäure (ASS) einmal 81mg vs. Dalteparin einmal 5000IE vom 10. bis 38. Tag nach Operation bei elektivem Hüftgelenkersatz. Dabei fand sich kein signifikanter Unterschied (0,3% für ASS vs. 1,3% für Dalteparin, p=0,22) zwischen beiden Gruppen. Die Aussagekraft der Studie ist jedoch sehr unsicher, da die avisierte Patientenzahl aufgrund von Schwierigkeiten bei der Patientenrekrutierung nicht erreicht werden konnte und vorzeitig abgebrochen wurde. Deshalb kann eine prolongierte Fortführung der medikamentösen Prophylaxe mit ASS statt z.B. NMH nicht empfohlen werden.

Innerhalb des empfohlenen Zeitraums ist eine erneute Prüfung der Indikation zur prolongierten VTE-Prophylaxe durch Studien ebenso wenig belegt wie eine Dosisreduzierung.

### 3.1.6.2 Kniegelenkendoprothetik und kniegelenknahe Frakturen und Osteotomien

Patienten mit großen orthopädischen oder unfallchirurgischen Eingriffen am Kniegelenk sollen neben Basismaßnahmen (z.B. Frühmobilisation, Anleitung zu Eigenaktivierung der Wadenmuskulatur) eine medikamentöse VTE-Prophylaxe erhalten. ↑↑
Bei elektiven Kniegelenkersatzoperationen soll die medikamentöse Prophylaxe mit niedermolekularen Heparinen (NMH), Fondaparinux oder Nicht-Vitamin-K abhängigen oralen Antikoagulanzien (NOAK) erfolgen. 

Bei kniegelenknahen Frakturen und Osteotomien soll die medikamentöse VTE-Prophylaxe mit NMH oder Fondaparinux erfolgen. 

Bei früher aufgetretener Heparinunverträglichkeit sollen bei elektiven Kniegelenkersatzoperationen Fondaparinux oder NOAK, bei kniegelenknahen Frakturen und Osteotomien Fondaparinux eingesetzt werden. 

Zusätzlich zur medikamentösen Prophylaxe können physikalische Maßnahmen - medizinische Thromboseprophylaxestrümpfe (MTPS) oder intermittierende pneumatische Kompression (IPK) - eingesetzt werden. 

Bei Kontraindikationen gegen eine medikamentöse Prophylaxe soll eine intermittierende pneumatische Kompression eingesetzt werden. 

Die medikamentöse Prophylaxe mit NMH kann bei elektiven Patienten am Vorabend der Operation begonnen werden. 

Die Erstgabe von Fondaparinux soll frühestens 6 Stunden postoperativ erfolgen. 

Die Erstgabe von Dabigatranetexilat soll mit der Hälfte der im Weiteren verwendeten Tagesdosis 1-4 Stunden postoperativ begonnen werden. 

Die Erstgabe von Rivaroxaban soll 6-10 Stunden postoperativ erfolgen. 

Die Erstgabe von Apixaban soll 12-24 Stunden postoperativ erfolgen. 

Bei Patienten mit Frakturen, welche konservativ frühfunktionell behandelt werden, kann aufgrund fehlender Daten keine generelle Empfehlung zur VTE-Prophylaxe gegeben werden. 

Bei gelenkübergreifender Immobilisation im Hartverband soll in Analogie zu operierten Patienten eine medikamentöse VTE-Prophylaxe erfolgen. 

Bei elektivem Kniegelenkersatz soll die medikamentöse VTE-Prophylaxe 11 - 14 Tage durchgeführt werden. 

Nach einem Kniegelenkersatz beträgt das TVT-Risiko ca. 50% und das LE-Risiko liegt bei über 1% [160; 166]. Wie in Evidenztabelle 27 bzw. Evidenztabelle 29 dar-
gestellt, lässt sich die Rate von VTE-Komplikationen durch physikalische bzw. medikamentöse Maßnahmen deutlich reduzieren. Auch wenn die Datenlage zum Kniegelenkersatz insgesamt schwächer ist als für den Hüftgelenkersatz, kann auch hier die medikamentöse Prophylaxe mit physikalischen Maßnahmen kombiniert werden.

Wie in Evidenztabelle 31 aufgeführt, zeigte sich die Gabe von Fondaparinux gegenüber NMH hinsichtlich der Reduktion phlebographisch nachgewiesener, klinisch asymptomatischer Thromben vorteilhaft. Während die VTE-Rate sich durch Fondaparinux reduzieren ließ, waren in einer Studie Blutungskomplikationen signifikant häufiger zu beobachten [313].

Bei Patienten mit elektiven Kniegelenkersatzoperationen haben große Phase III Studien die Wirksamkeit und Sicherheit einer 10 bis 14 tägigen postoperativ eingeleiteten Prophylaxe mit Dabigatranetexilat oder Rivaroxaban im Vergleich zu präoperativ oder postoperativ begonnenem Enoxaparin belegt [24; 30]. Dabei zeigt sich für Dabigatranetexilat in beiden untersuchten Dosierungen (150 bzw. 220 mg täglich) vergleichbare Wirksamkeit und Sicherheit wie für 40 mg Enoxaparin. Die Nichtunterlegenheit im Vergleich zu zweimal 30 mg Enoxaparin wurde nicht erreicht (Evidenztabelle 75). Eine Meta-Analyse der drei in Evidenztabelle 75 aufgeführten Studien (Hüft- und Kniegelenkersatz) konnte keine wesentlichen Unterschiede zwischen Dabigatranetexilat (220 mg) und Enoxaparin (40 o. 60 mg) in zentralen Effektivitäts- oder Sicherheitsparametern feststellen [32]. Die unterschiedlichen Dosierungsempfehlungen für jüngere und ältere Patienten sowie für Patienten mit eingeschränkter Nierenfunktion sind zu beachten. Der Einsatz von Dabigatranetexilat wurde auch in einem Technology Appraisal Report als valide Option der VTE-Prophylaxe empfohlen [33].

Für Rivaroxaban (10 mg) findet sich im Vergleich zu einmal täglich 40 mg Enoxaparin und zweimal täglich 30 mg Enoxaparin eine signifikante Reduktion der VTE-Gesamtrate ohne signifikante Zunahme von Blutungskomplikationen (Evidenztabelle 76). In einer gepoolten Analyse der europäischen Zulassungsstudien (Hüft- und Kniegelenkersatz) konnte eine signifikante Reduktion der Rate symptomatischer venöser Thromboembolien und der Gesamtsterblichkeit von 0,8 % unter Enoxaparin auf 0,4 % unter Rivaroxaban ohne signifikante Zunahme der Blutungereignisse gezeigt werden [26]. Hierbei ist anzumerken, dass die Erfassung des kombinierten primären Endpunktes (symptomatische VTE und Gesamtsterblichkeit) nach zwei Wochen erfolgte. Dies war der Zeitpunkt, an dem alle Patienten aktive Studienmedikation erhielten [29].

Die Dosisempfehlung ist mit 10 mg einmal täglich für alle Patienten gleich. Der Einsatz von Rivaroxaban wurde auch in einem Technology Appraisal Report als valide Option der VTE-Prophylaxe empfohlen [34].

In 2 randomisierten kontrollierten Studien wurde Apixaban 2-mal täglich 2,5mg p.o. mit 1-mal täglich 40mg Enoxaparin s.c. [314] oder 2-mal täglich 30mg Enoxaparin s.c. [315] jeweils für die Dauer von 10 bis 14 Tagen verglichen (siehe Evidenztabelle 80). In beiden Studien war sowohl die Rate an Blutungskomplikationen als auch
die Summe unerwünschter Nebenwirkungen nicht verschieden. Während in der Untersuchung mit der höheren Enoxaparindosierung Apixaban nicht unterlegen war, zeigte sich im Vergleich zur Gabe von 1x40mg Enoxaparin eine signifikante Reduktion für den zusammengestzten Ergebnisparameter aus phlebographisch nachgewiesener tiefer Beinvenenthrombose plus nicht-tödlicher Lungenembolie plus Tod während der Phylaxe phase für Apixaban (15 vs. 24%). Für die Rate an symptomatischer tiefer Beinvenenthrombose und die anderen Ergebnisparameter wurden keine signifikanten Unterschiede beobachtet.

Der Einsatz von Apixaban wurde auch in einem Technology Appraisal Report als valide Option der VTE-Prophylaxe empfohlen [40]. Das Institut für Qualität und Wirtschaftlichkeit Im Gesundheitswesen (IQWiG) sieht für Patienten mit elektiver Kniegelenkersatzoperation allerdings keinen Beleg für einen Zusatznutzen von Apixaban gegenüber Enoxaparin aufgrund einer statistisch nicht signifikant erhöhten Rate an nicht tödlichen Lungenembolien bei Apixaban [41].

Kniegelenknahe Frakturen sind in Kohortenstudien mit einem hohen VTE-Risiko behaftet [316]. Bei der in der Regel notwendigen operativen Behandlung von kiegnahen Frakturen sowie bei kniegelenknahe Umstellungsosteotomien kann die Kombination von physischer und medikamentöser VTE-Prophylaxe sinnvoll sein.

Die Patienten dieser Gruppe sind grundsätzlich der Hochrisikogruppe zuzuordnen. Daher ist eine weitere Stratifizierung anhand von Lebensalter, Komorbidität und anderen Risikofaktoren ohne Relevanz für die VTE-Prophylaxe.

Zum Beginn der Prophylaxe siehe unter 2.7.1. Im Unterschied zu Eingriffen am Hüftgelenk entstehen Thrombosen bei Eingriffen am Kniegelenk ganz überwiegend innerhalb der ersten 10-14 Tage, so dass eine verlängerte Prophylaxe nicht immer erforderlich ist.

### 3.1.6.3 Immobilisation an der unteren Extremität und Eingriffe an Sprunggelenk oder Fuß

Patienten mit operativ versorgten Verletzungen der Knochen und/oder mit fixierenden Verbänden, d.h. immobilisierenden Hartverbänden oder gleich wirkenden Orthesen an der unteren Extremität sollten neben Basismassnahmen eine medikamentöse VTE-Prophylaxe erhalten.

Die medikamentöse Prophylaxe soll mit niedermolekularen Heparinen (NMH) erfolgen.
Die medikamentöse Prophylaxe sollte bis zur Entfernung des fixierenden Verbandes bzw. bis zum Erreichen einer Teilbelastung von 20kg und einer Beweglichkeit von 20° im oberen Sprunggelenk durchgeführt werden. (Expertenkonsens)

Sondervotum der DEGAM:

Patienten mit operativ versorgten Verletzungen der Knochen und/oder mit fixierenden Verbänden, d.h. immobilisierenden Hartverbänden oder gleich wirkenden Orthesen unterhalb des Kniegelenkes sollten in der Hausarztpraxis bei deutlich erhöhtem individuellen Thromboserisiko des Patienten neben Basismaßnahmen eine medikamentöse VTE-Prophylaxe erhalten.

Über die Dauer der medikamentösen VTE-Prophylaxe soll in Abhängigkeit von der zunehmenden Mobilisierung individuell entschieden werden.

Die Fixierung eines Gelenkes der unteren Extremität ist mit einem partiell immobilisierenden Verband gleichzusetzen. Dies gilt für das obere Sprunggelenk wie für das Knie und die Unfähigkeit des Auftretens verursacht durch einen Hartverband.


Es ist erwiesen, dass eine medikamentöse Prophylaxe wie auch eine physikalische Prophylaxe besser als keine Prophylaxe sind (Evidenztabelle 17 und Evidenztabelle 19).


Der postoperative Beginn der NMH-Prophylaxe nach Erlangen einer suffizienten
Hämostase ist etabliert und geht nicht mit einem erhöhten Risiko postoperativer Nachblutungen im Vergleich zu Placebo einher [325]. Bei Gabe des NMH im frühen postoperativen Setting kann eine einmalige Reduktion der Dosierung des verabreichten NMH erwogen werden.


Die oralen Vitamin-K-Antagonisten scheinen den NMH unterlegen zu sein, sowohl in Bezug auf die Thrombosieraten als auch auf die Blutungskomplikationen (Evidenztabelle 20) und werden deshalb nicht empfohlen.

Für Fondaparinux gibt es keine Daten, hierzu kann daher keine über die Situation der Heparinunverträglichkeit hinausgehende Aussage gemacht werden.

Eine frühzeitige Operation bei Verletzungen, Frühmobilisation und Anleitung zur Eigenaktivierung der Wadenmuskulatur gehören zu den Basismaßnahmen, die alle Patienten erhalten sollen.

Naturgemäß sind die physikalischen Maßnahmen bei Patienten mit einem Hartverband nicht anwendbar und haben daher hier keine Indikation.


Die medikamentöse VTE-Prophylaxe sollte bis zur Entfernung des Hartverbandes bzw. bis zum Erreichen einer Teilbelastung der betroffenen Extremität mit 20 kg bei gleichzeitig bestehendem Bewegungsausmaß von 20° im oberen Sprunggelenk fortgesetzt werden [328; 329]. Für den Hüft- und Kniegelenkersatz liegen randomisierte doppelblinde Studien mit verschiedenen NMH vor, die eine hochsignifikante


Bei widersprüchlichen Expertenmeinungen, aufgrund fehlender Studien mit klinisch
relevanten Thrombosen als Endpunkt sowie aufgrund der an sich schon sehr ge-
ringen Inzidenz von Thrombosen in diesem Bereich soll im hausärztlichen Setting 
eine gemeinsame Entscheidungsfindung mit dem Patienten bei Berücksichtigung 
seiner allgemeinen Thromboserisiken erfolgen.

3.1.6.4 Arthroskopische Eingriffe an der unteren Extremität

Nach diagnostischer Arthroskopie sollen Basismaßnahmen, insbesonde-
re die Frühmobilisation zur VTE-Prophylaxe durchgeführt werden. ↑↑

Eine medikamentöse VTE-Prophylaxe ist nicht generell erforderlich, 
wenig keine Immobilisation oder Entlastung durchgeführt wird und keine 
zusätzlichen Risikofaktoren vorliegen.

Diese Empfehlungen gelten auch für kurz dauernde therapeutische arthro-
skopische Eingriffe. (Expertenkonsens)

Nach längerdauernder arthroskopisch assistierter Gelenkchirurgie an 
Knie-, Hüft- oder Sprunggelenk sollte eine medikamentöse VTE-
Prophylaxe bis zum Erreichen der normalen Beweglichkeit mit einer 
Belastung von mindestens 20kg, mindestens aber für 7 Tage durchge-
führt werden. ↑

(Expertenkonsens)

Sondervotum der DEGAM:

Nach längerdauernder arthroskopisch assistierter Gelenkchirurgie am 
Knie- und Sprunggelenk soll über eine medikamentöse VTE-Prophylaxe in 
der Hausarztpraxis individuell im Arzt-Patient-Gespräch, ggfs. unter Rück-
sprache mit dem Operateur und unter Berücksichtigung weiterer patien-
tenbezogener Risikofaktoren für eine Thrombose mit dem Patienten ent-
schieden werden.

Die medikamentöse Prophylaxe soll mit niedermolekularen Heparinen 
(NMH) oder Fondaparinux erfolgen. ↑↑

Insbesondere therapeutische Kniearthroskopien können mit einem beträchtlichen 
Thromboserisiko verbunden sein [335; 335]. Es sind derzeit nur drei kleinere Stud-
dien bekannt (Evidenztabelle 39), in denen die antithrombotische Wirksamkeit von 
niedermolekularen Heparinen geprüft wurde.

In der Meta-Analyse der drei Studien ergibt sich zwar eine signifikante Senkung der 
TVT-Rate [157; 336], die Qualität der Evidenz ist aber nur als mittelmäßig einzuord-
nen, da keine der drei Primärstudien ein Placebo-kontrolliertes Design wählte. 
Dementsprechend wird weiterhin diskutiert, ob über Basismaßnahmen einschließ-

© AWMF 2015
lich Frühmobilisation hinaus eine routinemäßige medikamentöse VTE-Prophylaxe erforderlich ist. Das ACCP verzichtet in der Leitlinienversion von 2012 auf eine Empfehlung [36]. In den wenigen vorliegenden Studien lag die TVT-Rate nach Arthroskopie des Kniegelenkes ohne Prophylaxe zwischen 4,1% und 15,6%, was einem mittleren Risiko entspricht. Diese Rate konnte mit einer medikamentösen Prophylaxe auf 0,85% bis 1,6% gesenkt werden. Ein Trend zur Reduktion der TVT-Rate wurde in einer Studie auch im Vergleich zu physikalischen Maßnahmen (MTPS) gezeigt (siehe Evidenztabelle 81, [337])

Der Beginn der VTE-Prophylaxe kann prä- oder postoperativ erfolgen. Bei Unfallpatienten sollte die VTE-Prophylaxe abhängig vom Intervall bis zur Operation und von der Wahl des Anästhesieverfahrens begonnen werden (DGAI 2014 [38]).

Die DEGAM hat zur Dauer der Prophylaxe für den hausärztlichen Bereich ein Sondervotum formuliert und begründet dieses mit folgenden Argumenten:

Es liegen keine Studien mit patientenrelevanten Endpunkten vor, die bei dieser Indikation einen Nutzen gezeigt haben. In einer Studie wurde sogar wegen Risikohinweisenz in der Heparintherapie der Studienarm, der eine Heparinisierung nach Arthroskopie am Knie über 7 Tage hinaus vorsah, vorzeitig gestoppt [337].


Angesichts der nicht eindeutigen Evidenzlage sowie der Spezifika der hausärztlichen Versorgungs-Situation (weniger kranke und mobilere Patienten) kann nicht erwartet werden, dass Klinik-Empfehlungen in jedem Fall auch für das hausärztliche Setting Gültigkeit behalten.

### 3.1.7 Operationen und Verletzungen an der Wirbelsäule, Polytrauma, Verbrennungen

#### 3.1.7.1 Elektive Eingriffe an der Wirbelsäule

Die Datenlage erlaubt keine dezidierten Empfehlungen. Symptomatische thromboembolische Komplikationen scheinen nach Wirbelsäulenoperationen eher selten zu sein. Die Prävalenz asymptomatischer TVT ist deutlich höher, wobei nur ein Eingriff an der Lendenwirbelsäule als einigermaßen gesicherter Risikofaktor gelten kann.

Über eine physikalische oder medikamentöse VTE-Prophylaxe soll daher im Einzelfall unter Berücksichtigung zusätzlicher expositioneller und dispositioneller Risikofaktoren entschieden werden.

Die Angaben über die Prävalenz einer TVT oder LE bei Wirbelsäuleneingriffen


Der Vergleich mit Patienten, die keiner Prophylaxe unterzogen wurden, findet sich ansonsten nur in retrospektiven Studien, wobei die Studie von Desbordes und Mitarbeiter [338] durch ihre Fallzahl von 16.656 Patienten herausragt, die einer lumbo-lalen Bandscheibeneoperation unterzogen wurden. Im Einzelnen wurde in dieser Studie bei 10.351 Patienten keine Prophylaxe durchgeführt, bei 4304 Patienten kam
NMH, bei 1001 Patienten UFH und bei 1000 Patienten ein Thrombozytenaggregationshemmer zum Einsatz. Die Rate symptomatischer Thromboembolien zeigte keine signifikante Differenz.

Ein Vergleich mechanischer und medikamentöser Prophylaxe findet sich in einer kleinen dreiarmigen Studie bei spinalen Fusionsoperationen [347], wobei MTPS allein mit MTPS + IPK bzw. MTPS und Vitamin-K-Antagonisten (VKA) verglichen wurde (Evidenztable 43 ff.). Statistisch signifikante Unterschiede ergaben sich nicht. In der VKA-Gruppe wird aber ein verstärkter postoperativer Blutverlust über die eingeführten Drainagen beschrieben.

Der direkte Vergleich von NMH und UFH erfolgte in zwei randomisiert-kontrollierten Studien [348; 349], die keine eindeutigen Unterschiede hinsichtlich thromboembolischer Ereignisse erbrachten.

### 3.1.7.2 Wirbelsäulenverletzungen

Patienten mit Wirbelsäulenverletzungen sollen unter Abwägung des Blutungsrisikos eine medikamentöse Prophylaxe mit NMH erhalten. Aufnahme

Bei hohem Blutungsrisiko (z.B. nach Laminektomie oder bei intraspinalen Hämatom) sollte alternativ zur medikamentösen Prophylaxe eine IPK zur Anwendung kommen.

(Expertenkonsens)


Die Empfehlung von NMH, ggf. in Kombination mit physikalischen Maßnahmen erscheint daher sinnvoll, obwohl keine hochwertige Evidenz hierfür vorliegt [205].

3.1.7.3 **Polytrauma**

Patienten mit multiplen Verletzungen sollen eine medikamentöse VTE-Prophylaxe für die Dauer der intensivmedizinischen Behandlung erhalten, sobald keine akute Blutung oder kein akutes Blutungsrisiko mehr besteht. 

Sofern eine medikamentöse VTE-Prophylaxe nicht durchgeführt werden kann, sollte eine intermittierende pneumatische Kompression (IPK) eingesetzt werden.

Die medikamentöse Thromboseprophylaxe soll mit niedermolekularem Heparin (NMH) erfolgen. 

Bei Blutungsneigung, Niereninsuffizienz oder unsicherer Resorption kann alternativ unfraktioniertes intravenöses low-dose Heparin verwendet werden. ⇔ (Expertenkonsens)

Nach Abschluss der intensivmedizinischen Behandlung sollte die Thromboseprophylaxe entsprechend dem zugrunde liegenden Risik/o-Erkrankungsbild und dem Grad der Immobilisierung fortgeführt werden.

Polytrauma führt zu starker Aktivierung der Blutgerinnung und bedingt somit ein hohes VTE-Risiko. Die TVT-Rate lag in einer großen amerikanischen Studie bei 58% [87]; eine proximale TVT wurde in 18% beobachtet. Neben den allgemeinen Risikofaktoren, wie z.B. Verletzungsschwere und Immobilisation, wurden Frakturen großer Röhrenknochen, Rückenmarkverletzungen und direkte venöse Verletzungen als besonders risikoreich identifiziert [87; 351; 352]. Eine wichtige pathogenetische Rolle spielen auch Veränderungen des Gerinnungssystems, die durch starken Blutverlust, Transfusionen, Volumensubstitution, posttraumatischen Stress und weitere Ursachen bedingt sein können.

Die Evidenz aus randomisierten Studien (Evidenztabelle 52 und Evidenztabelle 53) umfasst eine Studie zum Vergleich einer Heparin-Gabe vs. keiner Therapie [353], vier Studien zum Vergleich einer Heparin-Gabe vs. einer mechanischen VTE-Prophylaxe [241; 353-355], zwei Studien zum Vergleich einer mechanischen VTE-Prophylaxe vs. keiner Therapie [353; 356], und eine Studie zum Vergleich NMH vs. UFH [325]. Insgesamt reichen die Studien hinsichtlich Qualität und Fallzahl nicht aus, um signifikante Unterschiede belegen zu können. Die Ergebnisse der Studien an Patienten mit singulären Verletzungen unterstützen jedoch die Notwendigkeit einer medikamentösen Prophylaxe.
Trotz des hohen VTE-Risikos ist eine medikamentöse VTE-Prophylaxe beim Poly-/Neurotrauma aber nicht unumstritten [357], da das Blutungsrisiko frischer Verletzungen, z.B. im Schädel, intraabdominell, retroperitoneal, in kontusionierten Weichteilen, etc. hierdurch ansteigen kann. Ein stark erhöhtes Blutungsrisiko besteht allerdings oft nur kurzfristig und phasenweise wie beispielsweise

- in der initialen Intensivbehandlung (Blutung, disseminierte intravasale Koagulopathie/Verbrauchskoagulopathie). Nach Kontrolle der akuten Blutung und der ggf. bestehenden Koagulopathie nimmt das Blutungsrisiko innerhalb von 24 bis 48 Stunden deutlich ab. Allerdings ist eine fundierte Bewertung des Blutungsrisikos im zeitlichen Abstand zum Trauma weder auf Kollektive noch auf Individuen bezogen möglich, da hierzu keine Daten vorliegen;

- bei Schädel-Hirn-Trauma. Hier werden physikalische Maßnahmen empfohlen. Hinsichtlich medikamentöser Maßnahmen wird eine offene Empfehlung ausgesprochen, eine individuelle Nutzen-Risiko-Abwägung ist erforderlich (siehe Kap. 3.1.2, Neurochirurgische Eingriffe);

- bei inkomplett oder progredienter Rückenmarkläsion und nachgewiesenen intraspinalem Hämatom;

- bei nicht-operativ behandelten Milz- oder Leberverletzungen.


Der Zeitpunkt, ab wann das erhöhte Blutungsrisiko nicht mehr relevant ist, kann nicht eindeutig bestimmt werden. Für viele Situationen ist anzunehmen, dass er nach 24-48 Stunden erreicht ist, jedoch werden operationsbedürftige sekundäre Blutungseignisse auch nach mehr als einer Woche noch beobachtet. Außerdem spielt der Schweregrad der Organverletzung eine wichtige Rolle bei der Einschätzung des sekundären Blutungsrisikos.

Wenn kein Schädelhirntrauma bzw. die speziellen Blutungsrisiken der Akutphase nicht mehr vorliegen, gelten die gleichen Empfehlungen wie bei Intensivpatienten im Allgemeinen (s. dort).

Nach Ende der intensivmedizinischen Behandlung folgt die Fortführung einer VTE-Prophylaxe entsprechend dem Fortbestehen expositioneller und dispositioneller Risikofaktoren (zugrunde liegendes Erkrankungsbild bzw. Verletzungs muster, Grad der Immobilisierung etc.).

Eine ausreichende Datenlage zur Wahl des Medikamentes zur medikamentösen Thromboseprophylaxe liegt nicht vor. Die bestehenden Studien sind klein, von ungenügender Qualität und decken nicht das Spektrum der möglichen Optionen ab. Somit können im Analogieschluss für die Medikamentenwahl die ähnlichen Erwägungen gelten wie für andere Hochrisikopatienten und andere Intensivpatienten. In der Studie von Geerts [87] fand sich ein Vorteil von NMH im Vergleich zu UFH, al-

Bei stabilen Patienten ohne erhöhtes Blutungsrisiko und ohne Niereninsuffizienz könnte bei dem hohen Thromboembolierisiko auch Fondaparinux angewendet werden. Hier sind die Erfahrungen allerdings noch limitiert und nicht publiziert, so dass noch keine Aussage für oder gegen eine Anwendung gemacht werden kann.


Das Einsetzen von Vena-cava-Filtern bei Polytrauma-Patienten ist propagiert worden, da man hoffte, so das Blutungsrisiko einer medikamentösen VTE-Prophylaxe zu umgehen [358]. Abgesehen von einer in [317] aufgeführten unpublizierten Pilotstudie und der ergebnislosen Studie von Greenfield [127] existieren aber keine RCTs zur Effektivität der Vena-cava-Filter in der Traumatologie [317; 352]. Ein systematisches Review fand lediglich eine Reihe nicht-randomisierter Vergleichsstudien, die eine Absenkung der LE-Rate durch Vena-cava-Filter zeigten [177]. Eine randomisierte Studie zur dauerhaften Einlage von Vena-Cava-Filtern an einem nicht-chirurgischen Patientenkollektiv zeigte neben einer Verringerung von LE (6% vs. 15%) jedoch auch Nachteile der Filter auf, z.B. eine Erhöhung der TVT-Rate (36% vs. 28%). Daher empfehlen Experten die Einlage eines Vena-cava-Filters nur bei polytraumatisierten Patienten, die ein sehr hohes VTE-Risiko [127; 152]) und gleichzeitig eine Kontraindikation zur medikamentösen und physikalischen Prophy-
Bei Frakturen des Azetabulums oder des Beckenrings gelten die gleichen Empfehlungen wie bei den hüftgelenknahen Frakturen. 

(Expertenkonsens)


Bei den genannten Beckenfrakturen sind in Bezug auf die mechanische Gewalteinwirkung und das Trauma einer operativen Stabilisierung mit den dadurch verursachten thrombogenen Veränderungen mindestens ähnliche starke Noxen anzunehmen wie nach der Hüftgelenkendoprothetik und der Behandlung hüftgelenknaher Frakturen. Im postoperativen Verlauf ist die Immobilisierung nach Beckenfrakturen eher prolongierter anzunehmen. Meist ist eine Entlastung des Beins der betroffenen Seite für mindestens sechs Wochen angezeigt. Somit dürfte die Thromboembolieprophylaxe sowohl in Bezug auf das Erfordernis einer medikamentösen als auch der Dauer der postoperativen Fortführung der Prophylaxe derjenigen in der Hüftgelenkendoprothetik und der Behandlung hüftgelenknaher Frakturen entsprechen.

Frakturen des vorderen Beckenrings werden meist frühfunktionell mit schmerzabhängiger Mobilisierung behandelt. Hier ist ebenfalls die Analogie zu den konservativ mit Frühmobilisierung behandelten hüftgelenknahen Frakturen anzunehmen.
3.1.7.5 Verbrennungen

Patienten mit Verbrennungen sollen eine medikamentöse VTE-Prophylaxe erhalten, wenn das Ausmaß der Verbrennungen zu einer Immobilisation führt oder zusätzliche Risikofaktoren vorliegen. """

Bei großer Verbrennungsoberfläche, Blutungsneigung, Niereninsuffizienz oder unsicherer Resorption kann alternativ unfractioniertes, intravenöses low-dose Heparin verwendet werden. ⇔ (Expertenkonsens)

In der akuten Phase oder Volumenersatzphase, in den ersten 48-72 Stunden nach dem Trauma, führen kardiovaskuläre Faktoren zu einer Hypovolämie mit erniedrigtem Blutfluss in Organe und Gewebe [366].

Extensive Verbrennungen erzeugen darüber hinaus eine Thrombusformation in Kapillaren, Arteriolen und Venolen als Folge einer Komplementaktivierung und der einsetzenden Koagulationskaskade. Das Ausmaß einer Thrombosierung kleiner Gefäße verhält sich direkt proportional zur Ausdehnung der Verbrennung, d.h. ausgehendere Verbrennungen erzeugen einen größeren prothrombogenen Effekt.

Es wird außerdem postuliert, dass die außer Kontrolle geratene Gerinnung, die zur Hyperkoagulabilität und Mikrozirkulationsstörungen führt, wesentlichen Anteil an Organversagen und tödlichen Verläufen hat [367; 368].


Die sonographische oder phlebographische TVT-Inzidenz nach schweren Verbrennungen liegt bei etwa 0,9 bis 6%, die Inzidenz von Lungenembolien bei etwa 0,2 bis 1,2% [10; 370-375]. Neben den oben dargestellten allgemeinen Risikofaktoren ist also ein Zusammenhang zwischen dem Ausmaß der Verbrennungen und dem VTE-Risiko anzunehmen [369; 371]. Aufgrund der insgesamt geringen VTE-Inzidenz halten einige Autoren eine routinemäßige medikamentöse Prophylaxe für nicht indiziert, während andere Autoren diesen Standpunkt vertreten. Aussagekräftige randomisierte Studien liegen für Patienten mit Verbrennungen nicht vor.

3.2 Innere Medizin/Neurologie

3.2.1 Akute internistische Erkrankungen

Stationäre Patienten mit akuten internistischen Erkrankungen und Bettlägerigkeit sollen eine medikamentöse VTE-Prophylaxe erhalten.

Die medikamentöse Prophylaxe soll vorzugsweise mit NMH in Hochrisikodosierung oder Fondaparinux erfolgen.

Die medikamentöse Prophylaxe sollte in der Regel für 6 bis 14 Tage durchgeführt werden.


Eine erste ökonomische Analyse zeigt, dass durch eine medikamentöse VTE-Prophylaxe Kosteneinsparungen auf volkswirtschaftlicher Ebene erzielt werden könnten [382].

In mehreren RCTs wurde eine Prophylaxe mit UFH und NMH bei internistischen Patienten direkt miteinander verglichen (Evidenztabelle 56). Nach einer Meta-Analyse von Wein et al., 2007 [380] sind niedermolekulare Heparine (NMH) dem unfraktio-
nierten Heparin (UFH) überlegen. Hier zeigten sich aber nur geringe Unterschiede (RR 0,68), so dass in internationalen Leitlinien beide Substanzklassen empfohlen werden (ACCP 2012) [205]. Auch aus einer neueren direkten Vergleichsstudie von UFH und NMH jeweils in Hochrisikoprophylaxe-Dosierung ergeben sich keine anderen Rückschlüsse [189]. Eine Bevorzugung von NMH und Fondaparinux lässt sich mit der geringeren Gefahr einer HIT-Reaktion begründen. Außerdem sind zur Frage der optimalen Dosierung von UFH noch einige Fragen offen, die durch bisherige Studien nicht beantwortet werden können. Bei der Dosierung von NMH und Fondaparinux soll die Nierenfunktion beachtet werden (s. Kap. 2.5.1).

Zum Einsatz physikalischer Maßnahmen gibt es für internistische Patienten keine ausreichende Datenlage. Die intermittierende pneumatische Kompression der unteren Extremität wurde bisher nicht ausreichend untersucht und der Stellenwert von medizinischen Thromboseprophylaxestrümpfen lässt sich aus der vorliegenden Datenlage nicht ableiten (Evidenztabelle 54 und Evidenztabelle 61). Die Evidenz hinsichtlich physikalischer Maßnahmen ist also nicht ausreichend, um eine Empfehlung der routinemäßigen Anwendung zu rechtfertigen.

**Prolongierte VTE Prophylaxe bei internistischen Patienten**

Zur Frage der prolongierten VTE-Prophylaxe mit NMH wurde bisher nur eine randomisierte Doppelblindstudie durchgeführt. In dieser EXCLAIM-Studie konnte die Rate proximaler Beinvenenthrombosen durch poststationäre Prophylaxe über einen Gesamtzeitraum von vier Wochen mit einmal täglich 40 mg Enoxaparin im Vergleich zu konventioneller Kurzzeitprophylaxe von 6 bis 10 Tagen von 4,0 % auf 2,5 % signifikant gesenkt werden, jedoch stieg auch die Rate schwerer Blutungen von 0,3 % auf 0,8 % signifikant an [383]. Auch zwei weitere Studien mit Nicht-Vitamin-Kabhängigen oralen Antikoagulanizien (NOAK) konnten den Nutzen einer prolongierten VTE-Prophylaxe über einen Zeitraum von 6 bis 14 Tage hinaus nicht unter Beweis stellen [384; 385]. Weitere Untersuchungen sind notwendig, um das Verhältnis von Nutzen und Risiko einer längeren medikamentösen Prophylaxe bei internistischen Patienten besser abschätzen zu können. Es kann derzeit keine generelle Empfehlung einer prolongierten bzw. poststationären Prophylaxe gegeben werden und die Entscheidung einer Verlängerung der Prophylaxe über zwei Wochen bzw. den stationären Aufenthalt hinaus sollte im Einzelfall aufgrund der individuellen Risikokonstellation erfolgen. Der Krankheitsverlauf sowie die Abschätzung der Mobilität des Patienten und das Vorliegen dispositioneller Risikofaktoren können hierbei hilfreich sein.

---

### 3.2.2 Maligne Erkrankungen (nicht-operative Behandlung)

**Wegen Tumorerkrankungen stationär behandelte Patienten sollen eine medikamentöse VTE-Prophylaxe erhalten.**

---

© AWMF 2015
Die medikamentöse VTE-Prophylaxe soll vorzugsweise mit niedermolekularen Heparinen oder Fondaparinux erfolgen.

Die Dauer der medikamentösen VTE-Prophylaxe sollte den gesamten Krankenhausaufenthalt umfassen.

(Expertenkonsens)

Venöse thromboembolische Ereignisse (VTE) sind schwerwiegende Komplikationen einer malignen Tumorerkrankung und werden bei 4-20% der Patienten klinisch manifest [386; 387]. Hospitalisierte Tumorpatienten haben ein Thromboembolierisiko in der Höhe von 20% [378]. Venöse Thromboembolien wird eine wesentliche Bedeutung beim Ableben von Tumorpatienten zugemessen; autopsische Untersuchungen finden bei bis zu 50% der im Krankenhaus verstorbenen Tumorpatienten eine Thrombose und/oder Lungenembolie. Patienten mit malignen Tumoren sind hinsichtlich venöser Thromboembolien grundsätzlich der Hochrisikogruppe zuzuordnen [388].


Drei große Placebo-kontrollierte multizentrische Doppelblindstudien bei akut erkrankten, internistischen Patienten zeigen eine signifikante Reduktion der Rate venöser Thromboembolien durch den Einsatz von niedermolekularen Heparinen bzw. Fondaparinux. Im Rahmen dieser Studien wurden 5-15% Patienten mit Krebserkrankungen behandelt - eine entsprechende Subgruppenauswertung zeigte eine bei entsprechend kleinen Fallzahlen zu erwartende nicht signifikante Halbierung der venösen Thromboembolierate im Rahmen der MEDENOX-Studie [378]. Die große Phase III Studie CERTIFY, die eine medikamentöse Thromboembolieprophylaxe mit dem NMH Certoparin mit UFH bei konservativen Patienten vergleicht, belegt die mindestens gleichwertige Wirksamkeit und Sicherheit des NMH auch bei der großen (n=274) Subgruppe der Tumorpatienten [389].


Tumorpatienten zeigen auch ein erhöhtes Blutungsrisiko, welches bei der Indikationsstellung zur medikamentösen VTE-Prophylaxe besonderer Berücksichtigung bedarf. Bei erhöhtem Blutungsrisiko bzw. anderen Kontraindikationen für eine medikamentöse VTE-Prophylaxe sollten Tumorpatienten physikalische Maßnahmen in Form von IPK in Analogie zu den allgemeinen Empfehlungen zur VTE-Prophylaxe erhalten (siehe Kap. 2.4.1). Für die Wirksamkeit dieser Maßnahmen bei Tumorpatienten wurde jedoch keine aus prospektiven Studien ableitbare Evidenz identifiziert.


Bei Patienten mit fortgeschrittenem Tumorleiden und ausschließlich palliativsymptomatischer Versorgung sollen diese Empfehlungen unter Berücksichtigung der individuellen Bedürfnisse und Präferenzen der Patienten sinnvoll in das Gesamtkonzept der Betreuung eingeordnet werden.
3.2.3 Schlaganfall

Patienten mit akutem ischämischem Schlaganfall und paretischem Bein haben ein hohes VTE Risiko und sollen eine medikamentöse Prophylaxe erhalten. 

Die medikamentöse Prophylaxe soll vorzugsweise mit NMH oder mit UFH in Hochrisikoprophylaxe-Dosierung erfolgen.

Die medikamentöse Prophylaxe sollte in Abhängigkeit von der Geschwindigkeit der Mobilisierung 6 bis 14 Tage durchgeführt werden.

Patienten mit akutem hämorrhagischem Schlaganfall und Parese im Bein sollten eine medikamentöse VTE-Prophylaxe erhalten, sobald kein akutes Blutungsrisiko mehr besteht.

Bei Kontraindikationen gegen eine medikamentöse VTE-Prophylaxe sollte eine physikalische VTE-Prophylaxe eingesetzt werden, bevorzugt die intermittierende pneumatische Kompression (IPK).

Patienten mit akutem Schlaganfall, insbesondere bei begleitenden Beinparesen, haben ein hohes Risiko für venöse Thromboembolien. Trotz stark differierender Literaturangaben kann man davon ausgehen, dass tiefe Beinvenenthrombosen in bis zu 50% der Fälle auftreten und Lungenembolien in bis zu 20% dieser Patienten gefunden werden [288; 396-398]. Letztere werden für bis zu einem Viertel der frühen Todesfälle nach Schlaganfall mit Hemiplegie verantwortlich gemacht [399].

Im Vergleich zu Placebo konnte durch dreimal tägliche Gabe von 5000 IE UFH die mittels Radiofibrinogen-Test ermittelte Thromboserate von 72% auf 22% bei Patienten mit ischämischem Schlaganfall gesenkt werden. Auch NMH und Danaparoid führten im Vergleich zu Placebo in der Mehrzahl der Studien zu einer signifikanten Absenkung der Rate tiefer Beinvenenthrombosen (Evidenztablelle 61 und Evidenztablelle 64).


In einer Cochrane-Übersichtsarbeit wurde durch die Zusammenfassung von fünf Studien mit insgesamt 705 Schlaganfallpatienten, bei denen eine Prophylaxe mit UFH gegen eine mit dem niedermolekularen Heparin Enoxaparin (eine Studie) bzw. mit Danaparoid (vier Studien) geprüft wurde, eine bessere Wirksamkeit (OR 0,52) von Enoxaparin und Danaparoid gegenüber UFH ermittelt [403]. Zwei weitere Meta-Analysen empfehlen ebenfalls NMH als optimale Abwägung zwischen Vor- und Nachteilen [20, 290], während eine vierte mehr Nach- als Vorteile sieht [404]. Weitere Meta-Analysen untersuchten andere Aspekte der Antikoagulation [405-409].

Physikalische Maßnahmen mit medizinischen Thromboseprophylaxestrümpfen bzw. IPK sind nur vereinzelt getestet worden (Evidenztabelle 60, Evidenztabelle 61 und Evidenztabelle 85), so dass eine Empfehlung dieser Methoden nur bei Kontraindikationen gegen eine medikamentöse VTE-Prophylaxe gegeben werden kann [227].

In einer neueren Vergleichsstudie von oberschenkellangen medizinischen Thromboseprophylaxestrümpfen und IPK wurde eine signifikant bessere Wirksamkeit von IPK nachgewiesen; die nach 30 tägiger Anwendungsdauer ermittelte Rate proximaler Beinvenenthrombosen konnte von 12,1 % unter MTPS auf 8,5 % unter IPK abgesenkt werden (p= 0.001). [174]. Die Ergebnisse dieser Vergleichsstudie führen zur Empfehlung des bevorzugten Einsatzes von IPK im Falle von Kontraindikationen gegen eine pharmakologische Thromboembolieprophylaxe. Darüber hinaus beruht diese Empfehlung auf Überlegungen zur Pathophysiologie (Förderung des Blutflusses in den tiefen Beinvenen bei Parese, d.h. Unfähigkeit der Dorsal- und Plantarflexion) und stützt sich auf eine positive Nutzen-Risiko-Abwägung (siehe Kap. 2.4.1). In diesem Zusammenhang ist allerdings zu erwähnen, dass Patienten mit hämorrhagischem Schlaganfall bzw. zerebralen Blutungen und Beinlähmung durchaus eine medikamentöse VTE-Prophylaxe erhalten sollten, sobald kein akutes Blutungsrisiko mehr besteht (zur Situation nach intrakranieller Blutung siehe auch Kap. 3.1.2).

### 3.3 Intensivmedizin

**Patienten mit intensivmedizinischer Behandlung sollen eine medikamentöse VTE-Prophylaxe erhalten.**

© AWMF 2015  Seite 91
Die medikamentöse VTE-Prophylaxe soll mit NMH oder unfraktioniertem Heparin subkutan in Hochrisikoprophylaxe-Dosierung erfolgen. ↑↑
Es sollten bevorzugt NMH eingesetzt werden.
(Expertenkonsens)

Bei Blutungsneigung, Niereninsuffizienz oder unsicherer Resorption kann alternativ die intravenöse Verabreichung von UFH in niedriger Dosierung („low-dose“) erfolgen. ⇔

Bei Kontraindikationen gegen eine medikamentöse VTE-Prophylaxe sollten physikalische Massnahmen, bevorzugt intermittierende pneumatische Kompression (IPK), eingesetzt werden. ↑

Die Dauer der medikamentösen Prophylaxe richtet sich nach dem Abklingen der akuten Erkrankung und der Zunahme der Mobilität.
(Expertenkonsens)


Die Studienlage zur Intensivmedizin ist begrenzt, die Studienqualität niedrig mit überwiegend nicht randomisierten Beobachtungsstudien und Fallserien [410]. Die Evaluierung der Rate an tiefen Venenthrombosen erfolgte meist nicht mittels Phlebographie. Die eingeschlossenen Patientengruppen sind sehr heterogen und beinhalten sowohl Patienten mit internistischen Erkrankungen als auch operative Patienten aller Fachgebiete einschließlich Patienten mit spinalem Trauma oder Schädelhirntrauma sowie polytraumatisierte Patienten. Die TVT-Inzidenz variiert dementsprechend erheblich und beträgt 7,4 bis 40% mit einer medikamentösen Thromboembolieprophylaxe sowie ca. 10 bis 88% ohne medikamentöse Thromboembolieprophylaxe [411; 412].

In einer retrospektiven Analyse von 272 internistischen Intensivpatienten konnte die Mortalität unter einer medikamentösen Thromboembolieprophylaxe um 55% gesenkt werden (OR 0,45 [95% CI 0,22-0,93]), während eine mechanische Prophylaxe keinen signifikanten Effekt zeigte [413]. Die medikamentöse Prophylaxe wurde mit
2-mal täglich 5000 IE UFH durchgeführt, nur 38% aller Patienten erhielten eine medikamentöse Prophylaxe. Die Diagnostik einer tiefen Beinvenenthrombose erfolgte nach klinischen Kriterien. In einer älteren Studie von Cade et al. wurde bei insgesamt 119 Patienten unfraktioniertes Heparin (5000 IE zweimal täglich s.c.) gegen Placebo geprüft [414]. Mit dem Radiofibrinogentest wurden tiefe Beinvenenthromben bei 13% der mit UFH behandelten gegenüber 29% in der Placebo-Gruppe gefunden, was einer relativen Risikoreduktion von 55% entspricht. Bei 223 Patienten mit einer dekompensierten beatmungspflichtigen COPD wurde die Rate tiefer Venenthrombosen um 30% reduziert. Dies entspricht einer Risikoreduktion um 45%. Der Nachweis der tiefen Venenthrombose erfolgte mittels Phlebographie, signifikante Unterschiede fanden sich in der Rate an distalen, aber nicht an proximalen Thrombosen. In einer Meta-Analyse wurde eine Reduktion von tiefen Venenthrombosen um 50% unter einer Thromboembolieprophylaxe mit UFH im Vergleich mit Placebo bei internistischen und chirurgischen Intensivpatienten gezeigt [411]. Bei traumatischen Patienten wird die Rate tiefer Venenthrombosen um weitere 30% reduziert, wenn niedermolekulare Heparine anstelle von unfraktionierten Heparinen verwendet werden. Eine erhöhte Blutungsrate wurde im Vergleich mit einer mechanischen Prophylaxe nicht beobachtet.

In eine Meta-Analyse [416] gingen 7 randomisierte Studien ein (insgesamt 7226 Patienten), die bei erwachsenen internistischen oder chirurgischen Intensivpatienten den Einsatz von Heparinen (NMH oder UFH) gegeneinander verglichen oder gegen keine Prophylaxe. Bezüglich des Endpunkts Tiefe Venenthrombose (TVT, 3 RCT, 3014 Pat.) war der Einsatz von UFH oder NMH gegenüber Placebo mit einem hochsignifikant geringeren Risiko assoziiert (RR, 0.51 [95% CI, 0.41, 0.63]; p < 0.0001; I² = 77%). Das Risiko für schwere (major) Blutungen (2 Studien, 2156 Pat.) unterschied sich nicht (RR, 0.82 [95% CI, 0.56, 1.21]; p = 0.32; I² = 50%). Beim Vergleich von UFH und NMH (4 RCT, 5188 Pat.) wurde kein signifikanter Unterschied bezüglich der TVT-Rate gefunden. Allerdings war der Einsatz von NMH im Vergleich zu UFH (2 RCT, 4722 Pat.) mit einem geringeren Risiko für Lungenembolien assoziiert (RR, 0.62 [95% CI, 0.39, 1.00]; p = 0.05; I² = 53%), auch für symptomatische (1 RCT, 3746 Pat.): (RR, 0.58 [95% CI, 0.34, 0.97]; p = 0.04). Die letzte genannte Studie zum Endpunkt symptomatische Lungenembolie hatte auch Sepsis-Patienten eingeschlossen (n=277 im LMWH Arm, n=277 im UFH-Arm) (siehe [417], Evidenzabelle 86). Das Risiko für schwere (major) Blutungen und Mortalität im Rahmen des Aufenthalts auf der Intensivstation unterschied sich in der Metaanalyse nicht [413]. Intensivpatienten könnten somit vom Einsatz niedermolekularer Heparine im Vergleich zu UFH profitieren.

Die Surviving Sepsis Campaign empfiehlt in ihrer Leitlinie aus dem Jahr 2012 bei allen Sepsis-Patienten eine medikamentöse VTE-Prophylaxe, bevorzugsweise NMH s.c.. Für Patienten mit einer Kreatinin-Clearance kleiner als 30 ml/min wird Dalteparin empfohlen oder ein anderes NMH mit geringer renaler Eliminierung (schwache Empfehlung) oder unfraktioniertes Heparin. Zusätzlich wird eine Prophylaxe mit

Der Beginn der medikamentösen Thromboseprophylaxe erfolgt nach dem Sistieren von Blutungen bzw. unter Abschätzung des individuellen Blutungsrisikos, die Prophylaxedauer wird durch die Dauer der Erkrankung und der Immobilität bestimmt.

Eine randomisierte Studie, die 406 kritisch kranke Patienten (davon 39 mit schwerer Sepsis/septischem Schock) für den direkten Vergleich von IPK und MTPS einschloss, zeigte ein zahlenmäßig, allerdings nicht signifikant niedrigeres Risiko thromboembolischer Ereignisse bei Einsatz von IPK [419], Evidenztabelle 86).


Bei Patienten mit einer schweren Niereninsuffizienz kann es unter der Gabe von NMH zu einer Akkumulation mit erhöhtem Blutungsrisiko kommen. Eine Meta-Analyse bei 4971 internistischen Patienten zeigt, dass niedermolekular Heparine bei Patienten mit einer Kreatinin clearance unter 30 ml/min akkumulieren und zu einer erhöhten Rate an schweren Blutungen führen (OR 2,25; 95% CI 1,19-4,27) [200]. Das Blutungsrisiko wurde durch eine empirische Dosisanpassung reduziert.
Die amerikanische Food and Drug Administration empfiehlt deshalb ab einer Kreatinin clearance unter 30 ml/min eine Halbierung der NMH-Dosis für Enoxaparin, in Deutschland sind die meisten NMH bei einer Kreatinin clearance unter 30 ml/min und Fondaparinux bei einer Kreatinin clearance unter 20 ml/min kontraindiziert.

Bei vielen intensivmedizinischen Patienten sind eine eingeschränkte Nierenfunktion und die Notwendigkeit einer Vasopressortherapie gleichzeitig vorhanden. Hierdurch ist zu erklären, dass in einer prospektiven Fallserie von überwiegend internistischen Intensivpatienten mit eingeschränkter Nierenfunktion (Kreatinin clearance unter 30 ml/min) normale anti-Xa-Spiegel nach subkutaner Gabe eines NMHs beobachtet wurden [423].

Vena-Cavafilter können bei einer tiefen Beinvenenthrombose das Risiko von Lungenembolien reduzieren, erhöhen jedoch die Rate an Rethrombosierungen [179]. Bei einer frischen oder kürzlich stattgehabten Thrombose und Kontraindikationen gegen eine medikamentöse VTE-Prophylaxe kann die passagere Implantation eines Cavafilters erwogen werden.

Die Dauer einer medikamentösen Prophylaxe richtet sich nach dem Fortbestehen expositioneller und dispositioneller Risikofaktoren (z.B. Abklingen der akuten Erkrankung und Zunahme der Mobilität).

### 3.4 Geburtshilfe und Gynäkologie

#### 3.4.1 Geburtshilfe


Vor und nach einer natürlichen Geburt oder einer Entbindung per凯撒- schnitt ist bei Frauen, bei denen keine zusätzlichen Risikofaktoren vorliegen, eine medikamentöse VTE-Prophylaxe nicht erforderlich.

Liegenvon Risikofaktoren für eine VTE vor, sollte zusätzlich zur nichtmedi- kamentösen VTE-Prophylaxe eine medikamentöse VTE-Prophylaxe mit NMH für die Dauer des erhöhten Risikos bzw. im Wochenbett (bis 6 Wo- chen postpartal) durchgeführt werden. 

Die Inzidenz venöser Thromboembolien steigt vor und nach einer Geburt um etwa das 5- bzw. 15-fache im Vergleich zur Allgemeinbevölkerung an [19; 114; 134]. Maternale thromboembolische Ereignisse beinhalten oberflächliche und tiefe Thrombo- sen, Lungenembolie und Ovarialvenenthrombosen. Das Risiko ist bereits im ersten Trimester erhöht [424] und zeigt insgesamt eine gleich hohe Rate in allen Trimena der Schwangerschaft [19]. Das höchste Risiko besteht, besonders wegen der peripartal eintretenden Gefäßschäden, in der ersten postnatalen Woche [114; 425]. Ins-
Das Gesamtrisiko einer venösen Thromboembolie (VTE) beträgt durchschnittlich etwa 0,2% [114; 426]. Das Risiko einer tödlichen LE liegt bei ca. 0,002% [427; 428]. Dementsprechend besitzen die unter Tabelle VII dargestellten dispositionellen Risikofaktoren eine sehr große Bedeutung [118; 134]. Auf Grund des jüngeren Alters der Schwangeren wird das Risiko bei nicht vorhandenen dispositionellen Risikofaktoren als gering eingestuft. Die individuelle Risikokonstellation für die Schwangere kann sich bei mehreren (> 2) Niedrigrisikofaktoren (Tabelle VII, Tabelle VIII, Tabelle IX Kap. 2) [19] von einem niedrigen in einen mittleren oder höheren Bereich verschieben. Eine Entbindung per Kaiserschnitt erhöht das Risiko eines VTE-Ereignisses um den Faktor 5 im Vergleich zur vaginalen Entbindung [130; 135].

In Ergänzung zu Tabelle IX der vorliegenden Leitlinie werden in Tabelle XI die besonderen Kriterien für eine Risikoklassifikation (niedriges, mittleres und hohes VTE-Risiko) in der Schwangerschaft dargestellt.

### Tabelle XI: Beispielhafte Risikogruppen (abgeleitet nach ACCP 2004 [8])

<table>
<thead>
<tr>
<th>Risikokonstellation in der Schwangerschaft</th>
</tr>
</thead>
</table>
| **Niedriges VTE-Risiko** | • Schwangere mit familiärer Thromboseanamnese*  
| | • Schwangere mit thrombophilen Faktoren ohne eigene oder familiäre Thromboseanamnese * |
| **Mittleres VTE-Risiko** | • Schwangere mit Thrombose in der Eigenanamnese ohne hereditäres thrombophiles Risiko *  
| | • Schwangere mit wiederholten Spontanaborten oder schwerer Präeklampsie/ HELLP-Syndrom und Thrombophilie (angeboren, erworben) ohne Thrombose in der Eigenanamnese *  
| | • Schwangere mit homozygoter Faktor V Leiden-Mutation in der Eigenanamnese*  
| | • Schwangere mit niedrigem Risiko und zusätzlichen Risikofaktoren (Adipositas, Präeklampsie, Infektion, Bettlägerigkeit) |
| **Hohes VTE-Risiko** | • Schwangere mit wiederholter Thrombose in der Eigenanamnese *  
| | • Schwangere mit homozygoter Faktor V Leiden-Mutation oder kombinierten thrombophilen Faktoren und einer Thrombose in der Eigenanamnese * |

*Risikokategorien für Thrombophilien bei Schwangeren [429]


### Tabelle XII: Risikofaktoren für VTE in Schwangerschaft und Wochenbett*

<table>
<thead>
<tr>
<th>Präexistente Risikofaktoren</th>
<th>Neu auftretende oder transient Risikofaktoren**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter &gt; 35 Jahre</td>
<td>Hyperemesis</td>
</tr>
<tr>
<td>Multiparität (&gt; 4 Geburten)</td>
<td>Dehydratation</td>
</tr>
<tr>
<td>Paraplegie</td>
<td>Ovarielles Überstimulations-Syndrom</td>
</tr>
<tr>
<td>Sichelzellanämie</td>
<td>Immobilität (&gt; 4 Tage) vor/nach der Geburt**, ***</td>
</tr>
<tr>
<td>Chronisch-entzündliche Erkrankungen</td>
<td>Präeklampsie</td>
</tr>
</tbody>
</table>
Präexistente Risikofaktoren | Neu auftretende oder transiente Risikofaktoren**
--- | ---
Angeborene maternale Herzfehler | Großer Blutverlust
Z.n. Herzklappenersatz | Protrahierte Geburtsverläufe***
Myeloproliferative Erkrankungen | vaginal-operative Entbindungen***
Adipositas (> 25) | Operative Maßnahmen in der Schwangerschaft oder im Wochenbett***
Assistierte Reproduktion | Trauma****
Mehrlingschwangerschaft | Systemischer Lupus erythematosides****
 | Kaiserschnittentbindung bes. Notsektio***,****
 | Gewichtszunahme über 21 kg
 | Rauchen > 10 Zigaretten pro Tag
 | Frühgeburt

* nach RCOG-Leitlinie # 37a (2015) [39]
** potentiell reversible oder erst später in der Schwangerschaft auftretende Risikofaktoren, die eine individuelle Anpassung der medikamentösen und nichtmedikamentösen Prophylaxe erfordern;
*** für das Wochenbett spezifische Risikofaktoren
**** nach C.J. Lockwood (2007) [430]

Der Stellenwert der medikamentösen VTE-Prophylaxe in der Schwangerschaft und im Wochenbett ist wegen der ethischen Problematik nicht durch große prospektiv randomisierte Studien sicher belegt. Alle folgenden Empfehlungen haben sich in der Fachwelt mit entsprechend niedrigem Evidenzgrad „entwickelt“ und müssen daher nach individuellen Gesichtspunkten unter enger Absprache mit der Schwangeren betrachtet werden.

In einem Cochrane Review von 2002 fanden sich 8 RCTs zur perinatalen VTE-Prophylaxe [431]. Insgesamt lassen sich keine klaren Vorteile für bestimmte Heparine erkennen, so dass keine spezifische Entscheidung zwischen UFH und NMH möglich ist, auch wenn in der Studie von Pettlilä et al. [432] das Risiko für Blutungskomplikationen unter NMH signifikant niedriger war.

Insgesamt kann die Sicherheit der medikamentösen VTE-Prophylaxe mit Heparinen für das unbegorene Kind als sehr hoch gelten [433]. Die Besonderheiten in der Pharmakokinetik der Heparine bei Schwangeren müssen jedoch beachtet werden, um eine Wirkung zu erzielen [434]. Es existieren neben den hier dargestellten Studien weitere RCTs, die Antikoagulanzien bei Frauen getestet haben, die aufgrund eines Antiphospholipid-Syndroms oder anderer Ursachen Aborte erlitten hatten [435; 436]. Dieser Bereich der Antikoagulation ist zwar nicht Gegenstand dieser Leitlinie, kann jedoch bei der Bewertung der Medikamentensicherheit hilfreich sein.

**Intrapartale VTE-Prophylaxe**

Für Patientinnen, die antepartal eine VTE-Prophylaxe mit NMH erhalten haben, soll die Gabe mit beginnender regelmäßiger Wehentätigkeit ausgesetzt werden. Physikalische Maßnahmen sollten auch bei Kaiserschnittentbindungen fortgeführt werden.

Anästhesie zur Geburt unter Antikoagulation

Schwangeren mit prophylaktischer Antikoagulation kann eine rückenmarknahe Rengionalanästhesie angeboten werden. Das Vorgehen folgt den Ausführungen in Kapitel 2.8 („Medikamentöse VTE-Prophylaxe und rückenmarknahe Anästhesie“) in dieser Leitlinie.

Postpartale VTE-Prophylaxe

Die Inzidenz von VTE-Ereignissen ist in der postpartalen Phase am höchsten. Die Entbindung per Kaiserschnitt erhöht das Risiko um den Faktor 2-4 im Vergleich zur Spontangeburt [130; 135; 437]. Die größeren Gewebsverletzungen im Rahmen vaginal-operativer Entbindungen erhöhen das Thromboserisiko ebenfalls.

Das Mittel der Wahl zur kurzfristigen (3-5 Tage) postpartalen Thromboembolieprophylaxe bei Patientinnen mit Risikofaktoren ist NMH. Relevante Nebenwirkungen, auch für gestillte Kinder, sind nicht beschrieben.

Eine postpartale medikamentöse Prophylaxe sollte bei allen Frauen erfolgen, die auch eine antepartale Prophylaxe erhielten. Patientinnen mit Hochrisikofaktoren sollen unabhängig vom Geburtsmodus eine postpartale medikamentöse und physikalische Prophylaxe für 6 Wochen postpartal erhalten.

Ausgenommen sind die Frauen, die die präpartale Prophylaxe ausschließlich zur Prävention bei wiederholten Aborten erhalten haben.

Es liegen keine ausreichenden Daten vor, ob die medikamentöse Prophylaxe nach spontaner vaginaler Geburt bei Frauen ohne Risikofaktoren effektiv ist. Sofern eine Hysterektomie erfolgt, gelten die in dieser Leitlinie aufgeführten Empfehlungen zu Eingriffen im Bauch-/Beckenbereich (siehe Kap. 3.1.4.).

Frauen mit Niedrigrisikofaktoren (Tabelle IX, Tabelle XI), die keine antepartale medikamentöse Prophylaxe erhalten haben, aber per Kaiserschnitt entbunden wurden und/oder eine positive Familienanamnese oder zusätzliche Risikofaktoren (Tabelle IX, Tabelle XI) haben, sollten neben der physikalischen auch eine medikamentöse postpartale Prophylaxe erhalten.

Es liegen keine ausreichenden Daten vor, wann nach der Geburt mit einer prophylaktischen Antikoagulation begonnen/fortgefahren werden soll. 4-6 Stunden nach vaginaler Entbindung und 6-12 Stunden nach operativer Entbindung erscheinen, wenn keine Blutungszeichen vorliegen, als sicher.

Die Indikation und Durchführung einer langfristigen postpartalen therapeutischen Antikoagulation ist nicht Gegenstand dieser Leitlinie (siehe hierzu die Leitlinie „Diagnostik und Therapie der tiefen Beinvenenthrombose und Lungenembolie“ [7]).
Physikalische Prophylaxe

Eine Kohortenstudie zeigt, dass angepasste medizinische Thromboseprophylaxestrümpfe (MTPS) das Risiko von VTE reduzieren können, so dass sich hieraus eine Alternative zur medikamentösen Therapie für Niedrigrisikoschwangere (Tabelle IX, Tabelle XI) mit Zusatzrisiko (Tabelle XII), Adipositas, Immobilität, Infektion ergibt. Die intermittierende pneumatische Kompression (IPK) ist für diese Fragestellung der Prophylaxe nach Kaiserschnittentbindungen noch nicht ausreichend evaluiert.

3.4.2 Gynäkologische Eingriffe

Für Patientinnen mit gynäkologischen operativen Eingriffen gelten im Grundsatz die gleichen Empfehlungen wie für Patienten mit anderen (viszeralchirurgischen, gefäßchirurgischen, urologischen) operativen Eingriffen im Bauch- und Beckenbereich.

(Expertenkonsens)

Bei Patienten mit niedrigem eingriffsbedingten expositionellen und fehlendem oder geringem dispositionellen VTE-Risiko (Tabelle IX) sollte keine medikamentöse Prophylaxe verabreicht werden. ↑

Patienten mit mittlerem VTE-Risiko (mittlere Eingriffe oder kleinere Eingriffe mit zusätzlichen dispositionellen Risikofaktoren (Tabelle VII) sollen eine medikamentöse VTE-Prophylaxe mit Heparinen erhalten. ↑↑

Zusätzlich können diese Patienten eine physikalische Prophylaxe (IPK/MTPS) erhalten. ⇔

Patienten mit hohem VTE-Risiko (große Eingriffe oder mittlere Eingriffe mit zusätzlichen dispositionellen Risikofaktoren) sollen eine medikamentöse VTE-Prophylaxe mit NMH erhalten. ↑↑

Alternativ kann Fondaparinux verwendet werden. ⇔

Zusätzlich können diese Patienten eine physikalische Prophylaxe (IPK/MTPS) erhalten. ⇔

Für laparoskopische Eingriffe und Operationen mit minimal invasivem Zugang (minimal access surgery) gelten die gleichen Indikationen zur VTE-Prophylaxe wie bei offenen Eingriffen im Bauch- und Beckenbereich.

(Expertenkonsens)
Die Dauer der medikamentösen VTE-Prophylaxe beträgt in der Regel 7 Tage. Sie sollte eingehalten werden unabhängig davon, ob die Patientin noch stationär oder schon ambulant geführt wird. ⇑

(Expertenkonsens)

Bei fortdauerndem VTE-Risiko (z.B. prolongierte Immobilisation, Infektion) sollte die VTE-Prophylaxe fortgeführt werden. ⇑

Patientinnen mit großen onkologischen Eingriffen sollen eine verlängerte VTE-Prophylaxe für 4 Wochen erhalten. ⇑⇑

(Expertenkonsens)

Bei Patientinnen mit großen gynäkologischen operativen Eingriffen beträgt die Prävalenz der tiefen Venenthrombose in einer Meta-Analyse gemessen mit dem Radiofibrinogentest zwischen 15% bis 40% [8; 15; 288].


Im Gegensatz zu Nordamerika wird die medikamentöse Thromboseprophylaxe in Europa üblicherweise präoperativ begonnen [293].


Hormonelle Kontrazeption und postmenopausale Hormontherapie

Hormontherapie und hormonelle Antikonzeption sind mit einem erhöhten Risiko für thromboembolische Ereignisse assoziiert [443] (siehe Kapitel 2.3.3).

Aussagen über die postmenopausale Hormontherapie stützen sich sowohl auf Metta-Analysen überwiegend von Beobachtungsstudien sowie die Daten der WHI-Studie (Women’s Health Initiative, der größten derzeit publizierten randomisierten kontrollierten Studie zum Nutzen als auch Risiko der Hormontherapie) und der HERS (Heart Estrogen/Progestin Replacement Study). Das relative Risiko (RR) für das Auftreten eines thromboembolischen Ereignisses steigt um den Faktor 2 bis 3. In der WHI-Studie war die Hazard Ratio R 2,11 (95% CI 1,58-2,82), entsprechend 34 (Hormongruppe) versus 16 Ereignisse (Placebogruppe)/10.000 Frauen/Anwendungsjahr.

Es existieren keine Studien, die zeigen, dass eine Reduktion des postoperativen Thromboserasikos mit einem präoperativen Aussetzen der Hormontherapie erzielt werden kann. Daher sollte Frauen, die eine Hormontherapie erhalten, eine perioperative Unterbrechung nicht routinemäßig empfohlen werden [15; 79; 111].

Prospektive Daten zeigen, dass Anwenderinnen von oralen Kontrazeptiva in der postoperativen Phase einen leichten Anstieg der Thromboeratrate von 0,5% auf 0,96% haben [444]. Trotz eines großen Patientinnenkollektivs von mehr als 17000 Frauen erreicht dies keine statistische Signifikanz. Das Risiko der venösen Thromboembolie korreliert direkt mit der Östrogendosis [67; 445]. Über das Risiko, unter neueren Antikonzeptiva (Hormonspirale, Hormonimplantat oder Hormonpflaster) eine postoperative Thrombose zu entwickeln, liegen keine Daten vor.

Das Risiko einer ungeplanten Schwangerschaft bei Absetzen der oralen Kontra-
zeptiva vor einem operativen Eingriff sollte in Bezug auf die Senkung des Thromboserasikos abgewogen werden [446]. Eine Unterbrechung der Einnahme der Kontrazepiva ist nicht zu empfehlen. Anwenderinnen von hormonalen Kontrazeptiva sollten bei größeren operativen Eingriffen eine medikamentöse und physikalische Thromboseprophylaxe erhalten [446].

### 3.5 Pädiatrie und Neonatologie

<table>
<thead>
<tr>
<th>Es liegen keine ausreichenden Daten zur medikamentösen und physikalischen VTE-Prophylaxe bei Kindern und Neugeboren vor.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eine VTE-Prophylaxe ist bei Kindern nur in Ausnahmefällen erforderlich.</td>
</tr>
<tr>
<td>Kinder und Jugendliche mit früherer Thrombose sollen in Risikosituationen eine medikamentöse VTE-Prophylaxe erhalten.</td>
</tr>
<tr>
<td>Bei kleineren Eingriffen (z.B. Herniotomie, Circumzision, Orchidopexie) kann auf eine medikamentöse VTE-Prophylaxe verzichtet werden.</td>
</tr>
<tr>
<td>Geschwister von Kindern, die eine Thrombose/Embolie im Rahmen eines nachgewiesenen Antithrombin, Protein-C, oder Protein S Mangels erlitten haben, sollen auf diesen Defekt getestet werden und, falls dieser Defekt vorhanden ist, eine medikamentöse VTE-Prophylaxe erhalten.</td>
</tr>
<tr>
<td>(Expertenkonsens)</td>
</tr>
<tr>
<td>Bei Jugendlichen mit beginnenden Pubertätszeichen (ab Tanner II) sollten expositionelle und dispositionelle Risikofaktoren wie bei Erwachsenen bewertet werden.</td>
</tr>
<tr>
<td>Bei Kindern und Jugendlichen mit Hormontherapie (z.B. Hochwuchstherapie) sollten expositionelle und dispositionelle Risikofaktoren wie bei Erwachsenen bewertet werden.</td>
</tr>
<tr>
<td>Die medikamentöse Prophylaxe bei Kindern sollte mit niedermolekularen Heparinen (NMH) oder unfraktioniertem Heparin (UFH) erfolgen.</td>
</tr>
</tbody>
</table>

Aufgrund der Seltenheit thromboembolischer Ereignisse bei Neugeborenen, Kindern und Jugendlichen vor Einsetzen des Pubertätsstadiums Tanner II ist eine primäre VTE-Prophylaxe nur in Ausnahmefällen erforderlich.

Venöse Thromboembolien (VTE) im Kindesalter sind seltene Ereignisse und treten spontan hauptsächlich in der Neugeborenenperiode auf (5.1/100.000 Lebendgebur-
ten/Jahr), mit einer weiteren Häufung zu Beginn der Pubertät. Symptomatische thromboembolische Ereignisse sind mit 0,07/10.000/Jahr für alle Kinder unter 18 Jahre und mit 5,3/10,000/Jahr bei im Krankenhaus behandelten Kindern beschrieben [447-449].

Die Notwendigkeit einer VTE-Prophylaxe ist bei Kindern nur in Ausnahmefällen gegeben [450-452]. Die Entscheidung, ob es sich um einen solchen Ausnahmefall handelt, setzt eine ausführliche Erhebung der Eigen- und Familienanamnese voraus; dabei sind vor allem Grunderkrankung, geplante diagnostische und therapeutische Interventionen und familiäre thromboembolische Ereignisse in jüngerem Lebensalter (spontane, nicht getriggerte VTE, Myokardinfarkt oder Schlaganfall < 45. Lebensjahr) zu berücksichtigen.

Zu den speziellen Risikofaktoren bei Kindern gehören u.a. zugrunde liegende angeborene und erworbene kardiale Erkrankungen, die parenterale Langzeiternährung und Erkrankungen im Rahmen der Kinderonkologie.

Da bei Jugendlichen mit beginnenden Pubertätszeichen (ab Tanner II) die Risikoabschätzung wie bei Erwachsenen zu bewerten ist, beziehen sich die folgenden Empfehlungen auf Kinder (Pubertätsstadium < Tanner II).


Für eine medikamentöse Prophylaxe sollten bevorzugt unfraktioniertes Heparin (UFH) oder niedermolekulares Heparin (NMH) eingesetzt werden. Hinsichtlich des Beginns und der Dauer können die gleichen Erwägungen für Erwachsene auf Kinder übertragen werden. Grundsätzlich sind die Besonderheiten der Entwicklung des hämostatischen Systems und der Pharmakokinetik im Kindesalter mit ggf. erforderlichen Dosisanpassungen zu beachten (siehe ACCP-Leitlinien 2012, [450]).

### 3.5.1 Operative Medizin

**Eingriffe im Bauch- und Beckenbereich**

Bei Zirkumzision, Herniotomie, Orchidopexie ist bei Kindern in der Regel keine primäre VTE-Prophylaxe erforderlich [451].

Bei Appendektomie ist bei Kindern nur in Ausnahmefällen eine VTE-Prophylaxe zu erwägen, z.B. bei positiver VTE-Anamnese [453; 454], Adipositas, perforierter Appendix.

Bei Organtransplantation im Kindesalter gelten die in den „Transplantationsprotokollen“ festgelegten Richtlinien.
Orthopädie/Traumatologie

Bei Neugeborenen, Kindern und Jugendlichen mit bereits stattgehabter VTE sollte eine sekundäre VTE-Prophylaxe mit UFH oder NMH auch bereits vor Beginn der Pubertät erfolgen [453; 454].

Herz-, thorax- und gefäßchirurgische Eingriffe

Für Norwood-, Fontan-OP oder diagnostisch/therapeutische Herzkatheter kann für das perioperative Management UFH eingesetzt werden (nach ACCP [450]).

3.5.2 Innere Medizin

Pädiatrische Hämatologie/Onkologie

Die VTE-Prophylaxe in der pädiatischen Hämatologie / Onkologie ist eine Einzelfallentscheidung [454; 455].

Pädiatrische Gastroenterologie / Nephrologie / Intensivmedizin

Zur Prophylaxe katheterassozierter Thrombosen bei parenteraler Langzeiternährung oder von Shunthrombosen bei Dialyse können UFH oder NMH eingesetzt werden (nach [450]).

3.6 Urologie


Bei Patienten mit niedrigem eingriffsbedingten Risiko (einschließlich transurethralen Eingriffen) und fehlendem oder geringem dispositionellen VTE- Risiko sollte keine medikamentöse Prophylaxe verabreicht werden. ↑

Bestehen zusätzliche dispositionelle Risikofaktoren (Tabelle VII), soll eine medikamentöse Prophylaxe mit NMH oder UFH erfolgen. ↑↑

Patienten mit mittlerem VTE-Risiko (mittlere Eingriffe oder kleinere Eingriffe mit zusätzlichen dispositionellen Risikofaktoren) sollen eine medikamentöse VTE-Prophylaxe mit Heparinen erhalten. ↑↑

Zusätzlich können diese Patienten eine physikalische Prophylaxe erhalten. ⇔
**Patienten mit hohem VTE-Risiko (große Eingriffe oder mittlere Eingriffe mit zusätzlichen dispositionellen Risikofaktoren) sollen eine medikamentöse VTE-Prophylaxe mit NMH erhalten.**

Zusätzlich können physikalische Maßnahmen angewendet werden.

**Bei Lebendspender-Nephrektomie zur Nierentransplantation soll eine medikamentöse VTE-Prophylaxe mit NMH oder UFH erfolgen.**

**Bei fortlaufendem VTE-Risiko (z.B. prolongierte Immobilisation, Infektion) sollte die VTE-Prophylaxe fortgeführt werden.**


Das aus RCTs berechnete VTE-Risiko bei urologischen Eingriffen ohne Prophylaxe wird auf 10% (95% CI 6-15%) geschätzt (NICE 2007, NICE 2010), liegt aber wahrscheinlich höher. Urologische Patienten mit offenen oder laparoskopischen Eingriffen im Bauch- und Beckenbereich sind im Schnitt älter, haben häufiger eine bösartige Erkrankung, länger dauernde Eingriffe in Steinschnittlage, ggf. mit Lymphknotendissektion, und dadurch bedingt ein höheres VTE-Risiko.

Dies begründet die Notwendigkeit einer medikamentösen Prophylaxe mit Heparinen, die durch physikalische Maßnahmen ergänzt werden kann. Für Fondaparinux liegen bei mittleren und großen urologischen Eingriffen keine spezifischen Daten vor.

Patient noch stationär oder schon ambulant geführt wird.

Die Rate von VTE-Komplikationen bei transabdominellen und retroperitonealen urologischen Eingriffen entspricht der bei allen mittleren und großen Eingriffen im Bauch- und Beckenbereich; dagegen ist das Risiko bei transurethraler Resektion der Prostata als geringer einzuschätzen [457].

Zur Lebend-Spendernehrektomie bei Nierentransplantation liegt ein RCT mit der Empfehlung einer perioperativen VTE-Prophylaxe mit UFH oder NMH vor [458].

### 3.7 Besonderheiten der VTE-Prophylaxe in der ambulanten Medizin

<table>
<thead>
<tr>
<th>Die VTE-Prophylaxe in der ambulanten Medizin soll nach den gleichen Kriterien erfolgen wie die Prophylaxe im Krankenhaus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertenkonsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wird ein Patient aus dem Krankenhaus in die ambulante Versorgung entlassen, ist zu entscheiden, ob eine im Krankenhaus begonnene Prophylaxe fortgesetzt werden muss. Dabei sollte auf den Empfehlungen des Krankenhauses basierend gehandelt werden.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertenkonsens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sondervotum der DEGAM:</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------------------------------------------------------------------------------------------------------</td>
</tr>
</tbody>
</table>
Die Zeitdauer der Prophylaxe soll sich am Fortbestehen relevanter Risikofaktoren für venöse Thromboembolien orientieren. 

Bei Weiterbestehen einer deutlichen Erhöhung des VTE-Risikos und insbesondere in folgenden Situationen soll eine medikamentöse Prophylaxe länger fortgeführt werden: 

- orthopädische/unfallchirurgische Einriffe am Hüftgelenk (28-35 Tage postoperativ)
- orthopädische/unfallchirurgische Einriffe am Kniegelenk (11-14 Tage postoperativ)
- Tumoroperationen im Bauch- oder Beckenbereich (4-5 Wochen)

Immobilität ohne akute Erkrankung ist keine Indikation für eine über allgemeine Basismaßnahmen (Bewegungsübungen, adäquate Hydrierung) hinausgehende Thromboembolieprophylaxe. Auch Langstreckenreisen sind per se keine Indikation.

Bei Vorliegen zusätzlicher, dispositioneller Risikofaktoren kann eine der Risikoeinschätzung entsprechende VTE-Prophylaxe erfolgen.

Die VTE-Prophylaxe in der ambulanten Medizin erfolgt unter keinen anderen Kriterien als die Prophylaxe im Krankenhaus. Das betrifft die Einschätzung des individuellen VTE-Risikos (siehe Abschnitt 2, v.a. Tabelle VII, Tabelle VIII, Tabelle IX), die Art und Intensität wie auch die Dauer insbesondere der medikamentösen Maßnahmen (siehe Kapitel 2.7.2 und Kapitel 3 „Spezielle Empfehlungen“). Während bei stationären Patienten die Krankenhausaufnahme den Zeitpunkt vorgibt, an dem über Prophylaxemaßnahmen nachgedacht und entschieden wird, ist dieser Zeitpunkt in der ambulanten Medizin schwieriger zu bestimmen. Es ergeben sich jedoch folgende Standardsituationen:

3.7.1 Patienten, die aus dem Krankenhaus in die ambulante Versorgung entlassen werden

Hier ist zu entscheiden, ob eine im Krankenhaus begonnene Prophylaxe fortgesetzt werden soll. Hierbei kann auf die Empfehlung im Arztbrief zurückgegriffen werden. Fehlt eine solche, sollte im Krankenhaus nachgefragt werden bzw. gelten folgende Empfehlungen: die übliche gesamte Prophylaxedauer, die in Studien in der Regel getestet wurde, liegt nach operativen Eingriffen bzw. konservativer Behandlung bei 7 – 14 Tagen.

Besteht eine länger anhaltende Erhöhung des VTE-Risikos und/oder sind Risikofaktoren durch die Behandlung hinzugekommen – wie z.B. Pneumonie mit Bettlägerigkeit oder Immobilisierung der unteren Extremität durch Gips oder Fixateur externe an Hüft-, Knie-, oder Sprunggelenk, sollte in der Regel die VTE-Prophylaxe für die

3.7.2 Patienten, die akut erkranken, aber nicht stationär aufgenommen werden


3.7.3 Immobilisation ohne akute Erkrankung

Immobilisation ohne akute Erkrankung ist keine Begründung für eine VTE-Prophylaxe, insbesondere nicht für medikamentöse Maßnahmen. Dauerhaft bettlägerige Patienten oder Patienten im Rollstuhl, die zu Hause oder im Heim gepflegt werden, bedürfen keiner über die allgemeinen Basismaßnahmen hinausgehenden Prophylaxe, solange nicht eine schwere, akute und über mehrere Tage anhaltende Erkrankung hinzutritt.

Es sollte immer versucht werden, allgemeine Basismaßnahmen einzusetzen (Eigenübungen zur Aktivierung der „Muskelpumpe“, ggf. passive Bewegungsübungen, ausreichende Hydratation).
3.7.4 Vorübergehende Immobilisierung nicht erkrankter Personen


3.7.5 Anwendungshinweise zur medikamentösen VTE-Prophylaxe in der ambulanten Medizin

Bei im Krankenhaus begonnener Antikoagulation wie auch bei Einweisung eines Patienten ins Krankenhaus, der unter Antikoagulation steht, sollen dem Patienten sein Antikoagulanzienpass mit Angabe der Dosierung der letzten Tage mitgegeben werden.


Ein Problem bei der Aufklärung des Patienten in Bezug auf eine vorgeschlagene VTE-Prophylaxe ist, dass in der Regel nicht auf verlässliche Angaben zum absoluten Risiko spezifischer Patientengruppen und damit nicht auf die Angabe einer absoluten Risikoreduktion und der „Number Needed to Treat“ (NNT) zurückgegriffen wer-

Die sogenannte überbrückende oder Bridging-Antikoagulation bei Patienten, die auf Vitamin-K-Antagonisten eingestellt sind, diese aber wegen eines Eingriffs unterbrechen müssen, ist nicht Gegenstand dieser Leitlinie.
3.8 Aufklärung des Patienten zur VTE-Prophylaxe

Die getroffene Risikoabschätzung einer VTE und die sich daraus ergebenden Maßnahmen der VTE-Prophylaxe müssen bezüglich Nutzen, Risiko und Alternativen mit dem Patienten im Rahmen eines Aufklärungsge spräches besprochen werden (§ 630 e Abs. 1 und 2 BGB).

Das Aufklärungsgespräch kann formfrei geführt werden. Es muss in seinen wesentlichen Inhalten schriftlich dokumentiert werden (§ 630 f Abs. 2 BGB). Die etwaige Verweigerung des Patienteneinverständnisses und/oder den ärztlichen Verzicht auf eine VTE-Prophylaxe sollte der Arzt in die Patientenakte aufnehmen.

Die Aufklärung der Patienten über Nutzen, Risiko und Alternativen einer medikamentösen VTE-Prophylaxe ist eine klare gesetzliche Vorgabe, auch wenn deren medizinisch/organisatorische Umsetzung in der Praxis aufwändig und schwierig erscheint. Die obigen Leitlinienempfehlungen folgen hierbei der aktuellen Gesetzeslage (§ 630 e Abs. 1 und § 630 f Abs. 2 BGB).


Eine praktische Erleichterung bieten schriftliche Aufklärungsbögen [462; 463], auch wenn sie das Arzt-Patient-Gespräch nicht ersetzen können [461; 464].

Eine weitere Erleichterung stellt aus forensischer Sicht die indizielle Beweislast des regelmäßigen Aufklärungsverhaltens dar. Ist die Aufklärung über die VTE-Prophylaxe im Rahmen einer Dienstanweisung, eines klinischen Behandlungspfades o.ä. vorgeschrieben und wird sie in dieser Weise ständig im Gespräch mit dem Patienten praktiziert, sollte diese routinemäßige Übung im Krankenblatt durch Kür-
zel (Ankreuzung) vermerkt werden. Denn daraus lässt sich, wenn keine gegenteiligen Anhaltspunkte bestehen, der Schluss ziehen, dass auch im konkreten Fall entsprechend dieser Übung verfahren worden ist.

Ein separates rechtliches Problem ist der Einsatz nicht zugelassener Medikamente in der VTE-Prophylaxe. Nach dem Arzneimittelgesetz sind Medikamente nur für bestimmte Indikationen zugelassen. Wenn diese Zulassung fehlt, darf der Arzt dennoch auf eigene Verantwortung das Medikament im Rahmen seiner ärztlichen Therapiefreiheit einsetzen, muss dies allerdings medizinisch rechtfertigen können. Dabei müssen die Kriterien des so genannten „off label use“ berücksichtigt werden

- nachgewiesene Wirksamkeit
- günstiges Nutzen-Risiko-Profil
- fehlende Alternativen – Heilversuch

3.9 Qualitätsziele und klinische Messgrößen (Qualitätsindikatoren)

Ziel der Leitlinie ist es, eine möglichst effektive Behandlung (VTE-Prophylaxe) zu empfehlen. Dazu gehören in erster Linie die

- Vermeidung thromboembolischer Ereignisse/Komplikationen
- Vermeidung von unerwünschten Effekten prophylaktischer Maßnahmen (insbesondere Blutungskomplikationen und therapieinduzierte Thrombozytopenien).

Die **Ergebnisqualität** der VTE-Prophylaxe kann nur über die Erfassung und Dokumentation der Rate thromboembolischer Ereignisse und der Rate unerwünschter Therapieeffekte abgebildet werden. Für den stationären Versorgungsbereich wird die Erfassung der Rate postoperativer Lungenembolien und tiefer Venenthrombosen international unter dem Aspekt der Patientensicherheit empfohlen (OECD Health Care Quality Indicators Project [47; 465]). Zu berücksichtigen ist, dass der Rückgriff auf Routinedaten zu einer Unterschätzung der Zahl tatsächlicher eingetretener thromboembolischer Komplikationen führen kann, da in der Regel nur symptomatische Ereignisse erfasst werden. Es besteht jedoch eine enge Korrelation zwischen den Raten asymptomatischer distaler und proximaler TVT, symptomatischer TVT, symptomatischer LE und tödlicher LE [6]. Andererseits liegt keine ausreichende Evidenz vor, die ein routinemäßiges Screening asymptomatischer Patienten rechtfertigen würde. Hinsichtlich der Erfassung der Rate unerwünschter Therapieeffekte ist zu berücksichtigen, dass diese in den im Rahmen der Literaturrecherche für diese Leitlinie identifizierten Quellen nicht einheitlich definiert wurden. Die Dokumentation sollte daher spezifische Angaben enthalten, die eine Identifikation klinisch relevanter Ereignisse erlaubt (z.B. therapiebedürftige Blutungskomplikationen unter medikamentöser VTE-Prophylaxe, laboranalytisch bestätigte Heparin induzierte Thrombozytopenie Typ II (HIT II)).

Die Empfehlungen der Leitlinie fokussieren auf die angemessene Indikationsstellung und Durchführung von Maßnahmen zur VTE-Prophylaxe, um die oben genannten Ziele zu erreichen. Zur Erfassung der Umsetzung der Leitlinienempfehlungen (**Prozessqualität**) und zur Vereinheitlichung der Dokumentation werden im Folgenden zwei Qualitätsindikatoren vorgeschlagen (Tabelle XIII). Diese Indikatoren wurden direkt aus den Leitlinienempfehlungen abgeleitet, durch die Leitliniengruppe hinsichtlich ihrer methodischen Güte (Validität, Machbarkeit) beurteilt, ausgewählt und konsentiert ([46], Details siehe Kap. 1 Methodik). International publizierter Qualitätssymptome wurden ebenfalls recherchiert und in das Bewertungs- und Konsensierungsverfahren eingeschlossen [466-471]. Aufgrund der bereits hohen Versorgungsqualität für die VTE-Prophylaxe in Deutschland und der fehlenden technischen Messbarkeit vieler Indikatoren, wurden letztlich nur zwei Indikatoren ausgewählt, für die eine Dokumentation als gerechtfertigt und sinnvoll angesehen wird. Mit den hier vorgeschlagenen Indikatoren ist ein erster Schritt in Richtung der Qualitätssicherung für die VTE-Prophylaxe getan. Der vorrangig nächste Schritt ist ihr Einsatz im Rahmen einer Pilotphase. Dabei ist auch die Erreichbarkeit der Referenzbereiche zu überprüfen. Erst mit den so gene-
rierten Daten können die Indikatoren einer vollständigen methodischen Güteprüfung unterzogen werden [472].

**Tabelle XIII: Qualitätsindikatoren**

<table>
<thead>
<tr>
<th>Leitlinienempfehlung</th>
<th>Qualitätsziel</th>
<th>Qualitätsindikator (Referenzbereich)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kap. 2 Allgemeine Empfehlungen</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei Notwendigkeit der Fortführung der Prophylaxe soll der weiterbehandelnde Arzt darüber informiert werden. 

<table>
<thead>
<tr>
<th>Leitlinienempfehlung</th>
<th>Qualitätsziel</th>
<th>Qualitätsindikator (Referenzbereich)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Kap. 3.8 Aufklärung des Patienten zur VTE-Prophylaxe</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Die getroffene Risikoabschätzung einer VTE und die sich daraus ergebenden Maßnahmen der VTE-Prophylaxe müssen bezüglich Nutzen, Risiko und Alternativen mit dem Patienten im Rahmen eines Aufklärungsgespräches besprochen werden (§ 630 e Abs. 1 und 2 BGB). 

<table>
<thead>
<tr>
<th>Leitlinienempfehlung</th>
<th>Qualitätsziel</th>
<th>Qualitätsindikator (Referenzbereich)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Leitlinienempfehlung</th>
<th>Qualitätsziel</th>
<th>Qualitätsindikator (Referenzbereich)</th>
</tr>
</thead>
</table>

Dokumentation an Schnittstellen der Versorgung  

Anteil der Patienten mit Angabe zur nahtlosen Fortführung oder Beendigung einer VTE-Prophylaxe im Entlassungsbrief an allen Patienten, die bis zum Zeitpunkt der Entlassung eine VTE-Prophylaxe erhalten haben (≥ 95 %) 

Anteil der Patienten mit dokumentiertem Aufklärungsgespräch über Nutzen, Risiko und Alternativen der prophylaktischen Maßnahmen an allen Patienten, die eine VTE-Prophylaxe erhalten (≥ 95 %)
4 Evidenztabellen zum speziellen Teil

4.1 Operative Medizin/Trauma

4.1.1 Eingriffe im Kopf- und Halsbereich
Hierzu wurde keine Evidenz aus hochwertigen randomisierten Studien identifiziert.

4.1.2 Neurochirurgische Eingriffe

Evidenztabelle 1: Neurochirurgische Eingriffe: Physikalische Maßnahmen vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpie et al., 1977, RCT ++ [234]</td>
<td>Hirnblutung, Hirntumor-OP, n=128</td>
<td>IPK</td>
<td>Keine Prophylaxe</td>
<td>TVT-RateRFUT 1,5% vs. 19,1% p=0,00082, Blutg. k.A.</td>
</tr>
<tr>
<td>Skillman et al., 1978, RCT + + [233]</td>
<td>Neurochir. OP (53% WS, 47% Kraniotomie), n=95</td>
<td>IPK</td>
<td>Keine Prophylaxe</td>
<td>TVT-RateRFUT 8,5% vs. 25% p&lt;0,05, Blutg. k.A.</td>
</tr>
<tr>
<td>Turpie et al., 1989, dreidimensionale RCT ↔ [235]</td>
<td>Neurochir. OP (95% Kopf), n=239</td>
<td>MTPS + IPK // MTPS</td>
<td>Keine Prophylaxe</td>
<td>TVT-RateRFUT 9% vs. 8,8% vs. 19,8% p=0.028, Blutg. k.A.</td>
</tr>
</tbody>
</table>

Evidenztabelle 2: Neurochirurgische Eingriffe: Physikalische Maßnahmen vs. med. Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurtoglu et al., 2004, pRCT ↔ [241]</td>
<td>Kopftrauma (90% intrakranielles Hämatom, 10% WS, mittlerer ISS= 19), n=120</td>
<td>IPK</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>VTE-Rate duplex 6,6% vs. 5,0% n.s., Blutg. major 1,6% vs. 1,6% n.s.</td>
</tr>
<tr>
<td>Nurmohamed et al., 1996, RCT - + [240]</td>
<td>Neurochir. OP (82% Hirntumor), n=485</td>
<td>NMH 7500 aXaU² (Nadroparin) s.c. alle 24h + MTPS</td>
<td>Placebo s.c. alle 24h + MTPS</td>
<td>VTE-Ratepulmon. 13,7% vs. 20,9% p=0,018, Blutg. major 2,5% vs. 0,8% p=0,087</td>
</tr>
<tr>
<td>Agnelli et al., 1998, RCT ++ [229]</td>
<td>Neurochir. OP (85% intrakraniell, 15% WS), n=307</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTPS</td>
<td>Placebo s.c. alle 24h + MTPS</td>
<td>VTE-Ratepulmon. 17% vs. 32% p=0,004, Blutg. major 3% vs. 3% n.s.</td>
</tr>
<tr>
<td>Cerrato et al., 1978, RCT ↔ [239]</td>
<td>Neurochir. intra-kranielle OP (86% Hirntumor), n=100</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Keine Prophylaxe</td>
<td>TVT-RateRFUT 6% vs. 34% p&lt;0,005, Blutg. major 4% vs. 2%, n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 3: Neurochirurgische Eingriffe: Heparine vs. keine medikamentöse Prophylaxe
(Die Studie von Melon et al., die in der Meta-Analyse von Iorio und Agnelli enthalten ist, wurde als Abstract publiziert [473] und ist daher hier nicht berücksichtigt.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nurmohamed et al., 1996, RCT - + [240]</td>
<td>Neurochir. OP (82% Hirntumor), n=485</td>
<td>NMH 7500 aXaU² (Nadroparin) s.c. alle 24h + MTPS</td>
<td>Placebo s.c. alle 24h + MTPS</td>
<td>VTE-Ratepulmon. 13,7% vs. 20,9% p=0,018, Blutg. major 2,5% vs. 0,8% p=0,087</td>
</tr>
<tr>
<td>Agnelli et al., 1998, RCT ++ [229]</td>
<td>Neurochir. OP (85% intrakraniell, 15% WS), n=307</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTPS</td>
<td>Placebo s.c. alle 24h + MTPS</td>
<td>VTE-Ratepulmon. 17% vs. 32% p=0,004, Blutg. major 3% vs. 3% n.s.</td>
</tr>
<tr>
<td>Cerrato et al., 1978, RCT ↔ [239]</td>
<td>Neurochir. intra-kranielle OP (86% Hirntumor), n=100</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Keine Prophylaxe</td>
<td>TVT-RateRFUT 6% vs. 34% p&lt;0,005, Blutg. major 4% vs. 2%, n.s.</td>
</tr>
</tbody>
</table>

2 Die aXa-Aktivität wurde hier nach der (heute überholten) Messmethodik des Choay-Instituts angegeben.
Evidenztabelle 4: Neurochirurgische Eingriffe: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldhaber et al., 2002, RCT +++ [242]</td>
<td>Kraniotomie b. Hirntumor, n=150</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + IPK + MTPS</td>
<td>UFH 5000 IU s.c. alle 12h + IPK + MTPS</td>
<td>TVT-Rateduplex 12% vs. 6,7% n.s., Blutg.major 2,6% vs. 1,3% k.A.z.Sign.</td>
</tr>
<tr>
<td>Macdonald et al., 2003, RCT ++ [243]</td>
<td>Kraniotomie (63% Hirntumor), n=100</td>
<td>NMH (Dalteparin) 2500 IU alle 24h + IPK</td>
<td>UFH 5000 IU s.c. alle 12h + IPK</td>
<td>TVT-Rateduplex 4% vs. 0% n.s., Blutg-major 0% vs. 2% n.s.</td>
</tr>
</tbody>
</table>

4.1.3 Herz-, thorax- und gefäßchirurgische Eingriffe

Evidenztabelle 5: Herz-, thorax- und gefäßchirurgische Eingriffe: Stellenwert der physikalischen Maßnahmen

(NB: In der Studie von Ramos et al. wurden in der Kontrollgruppe dreimal mehr Patienten von der Studie ausgeschlossen als in der Interventionsgruppe.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldhaber et al., 1995, RCT -- [263]</td>
<td>Offene koronare Bypass-Chirurgie, n=344</td>
<td>MTPS + IPK</td>
<td>MTPS</td>
<td>TVT-Rateduplex 19% vs. 22% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Ramos et al., 1996, RCT --- [264]</td>
<td>Offene koronare Bypass-Chirurgie, n=2551</td>
<td>UFH 5000 IU s.c. alle 12h + IPK</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>LE-RateRFUT+szint 1,5% vs. 4,0% p&lt;0,001, Blutg. k.A.</td>
</tr>
</tbody>
</table>

Evidenztabelle 6: Herz-, thorax- und gefäßchirurgische Eingriffe: Heparin vs. keine Prophylaxe

(Ausgeschlossen wurde die Studie von Samama et al. [493], da sie sich ausschließlich mit der Verbesserung der Offenheit von peripheren Gefäßprothesen beschäftigt.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belch et al., 1979, RCT ++ [474]</td>
<td>Offener prothetischer Aortenersatz, n=49</td>
<td>UFH (2500 IU s.c. präop., dann 5000 IU s.c. alle 12h)</td>
<td>Placebo s.c. präop. und alle 12h</td>
<td>TVT-RateRFUT+phleb. 8% vs. 24% p&lt;0,05, Blutg.major 33% vs. 4% p&lt;0,05</td>
</tr>
<tr>
<td>Spebar et al., 1981, RCT -- [475]</td>
<td>Peripher-gefässchir. OP (inkl. Carotis), n=43</td>
<td>UFH (5000 IU s.c. 2h präop., dann 5000 IU s.c. alle 12h)</td>
<td>Keine Prophylaxe</td>
<td>TVT-RateRFUT+phleb. 13% vs. 11% n.s., Blutg.minor 8% vs. 16% k.A.z.Sign.</td>
</tr>
<tr>
<td>Killewich et al., 1997, RCT -- [476]</td>
<td>Offener prothetischer Aortenersatz, n=100</td>
<td>UFH 5000 IU s.c. alle 12h + IPK</td>
<td>Keine Prophylaxe</td>
<td>VTE-Rateduplex 2% vs. 2% n.s., Blutg-major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 7: Herz-, thorax- und gefäßchirurgische Eingriffe: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speziale et al., 1988, RCT -- [477]</td>
<td>Große gefäßchir. OP, n=92</td>
<td>NMH (Parnaparin) 1500 aXaU s.c. 2h präop., po. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-RateRFUT 7% vs. 9% n.s., Blutg.major 2% vs. 2% n.s.</td>
</tr>
<tr>
<td>Autor, Jahr, Design</td>
<td>Patientenkollektiv</td>
<td>Interventionsgruppe</td>
<td>Kontrollgruppe</td>
<td>Ergebnisse</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Beghi et al., 1993, RCT ++ [262]</td>
<td>Offene koronare Bypass-Chirurgie, n=39</td>
<td>NMH (Pamaparin) 3200 aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Rate duplex 0% vs. 0% n.s., Blutg minor 0% vs. 21% k.A.z. Sign.</td>
</tr>
<tr>
<td>Farkas et al., 1993, RCT + [478]</td>
<td>Große gefäßchir. OP, n=233</td>
<td>NMH (Enoxaparin) 4200 aXaU s.c. alle 24h</td>
<td>UFH 7500 IU s.c. alle 12h</td>
<td>TVT-Rate duplex 8,2% vs. 3,6% n.s, Blutg major 2,4% vs. 2,7% n.s.</td>
</tr>
<tr>
<td>Wiszniewski et al., 2002, RCT ++ [479]</td>
<td>Gefäßchir. OP b. peripherer arterieller Verschlusskrankheit, n= 242</td>
<td>NMH (Nadroparin 2850 aXaU oder Enoxaparin 2000 aXaU) 2h präop., po. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>VTE-Rate duplex 0,0% vs. 1,0% n.s., Blutg major 0,0% vs. 1,0% n.s.</td>
</tr>
</tbody>
</table>

**Evidenztabelle 8: Herz-, thorax- und gefäßchirurgische Eingriffe: Vergleich verschiedener Heparin-Dosierungen**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cade et al., 1983, RCT +++ [480]</td>
<td>Thorakotomie bei Bronchial- oder Ösophagus-CA, n=100</td>
<td>UFH 7500 IU s.c. alle 12h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Rate FUT 22% vs. 33% n.s., Blutg major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>
### 4.1.4 Eingriffe im Bauch- oder Beckenbereich

#### Evidenztabelle 9: Allgemeinchirurgische Eingriffe: Stellenwert der physikalischen Maßnahmen

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Browse und Negus, 1970, RCT ++ [481]</td>
<td>Allgemeinchir. OP, n=110 (220 Beine)</td>
<td>Elektrische Muskelstimulation (ein Bein)</td>
<td>Keine Prophylaxe (anderes Bein)</td>
<td>TVT-Rate RFUT 8,2% vs. 20,9% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Roberts und Cotton, 1974, RCT ++ [482]</td>
<td>Allgemeinchir. OP, n=99</td>
<td>IPK während der OP</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFUT 6,4% vs. 26,0% p&lt; 0,005, Blutg. k.A.</td>
</tr>
<tr>
<td>Holford, 1976, RCT ++ [483]</td>
<td>Allgemeinchir. OP, n=98</td>
<td>MTPS</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFUT 23% vs. 49% p&lt; 0,025, Blutg. k.A.</td>
</tr>
<tr>
<td>Scurr et al., 1977, RCT ++ [484]</td>
<td>Abdominalchir. OP, n=75</td>
<td>MTPS (ein Bein)</td>
<td>Keine Prophylaxe (anderes Bein)</td>
<td>TVT-Rate RFUT 11% vs. 37% p= 0,0003, Blutg. k.A.</td>
</tr>
<tr>
<td>Butson, 1981, RCT + [485]</td>
<td>Abdominalchir. OP, n=119</td>
<td>IPK</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFUT 9,7% vs. 7,0% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Allan et al., 1983, RCT ++ [486]</td>
<td>Abdominalchir. OP, n=200</td>
<td>MTPS</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFUT 15,5% vs. 35,9% p&lt; 0,0005, Blutg. k.A.</td>
</tr>
<tr>
<td>Scurr et al., 1987, RCT + [487]</td>
<td>Abdominalchir. OP, n=78</td>
<td>IPK + MTPS (ein Bein)</td>
<td>IPK (anderes Bein)</td>
<td>TVT-Rate RFUT 1% vs. 9% p= 0,0156, Blutg. k.A.</td>
</tr>
</tbody>
</table>

#### Evidenztabelle 10: Allgemeinchirurgische Eingriffe: Physikalische Maßnahmen vs. medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moser et al., 1980, RCT ++ [488]</td>
<td>Allgemeinchir. OP, n=227</td>
<td>UFH 5000 IU + DHE 0,5mg s.c. alle 12h // UFH 5000 IU alle 8h</td>
<td>KG + IPK (1h am Tag)</td>
<td>TVT-Rate RFUT + phleb. 9,2% vs. 6,6% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Törngren, 1980, RCT ++ [489]</td>
<td>Abdominalchir. OP, n=98</td>
<td>UFH 5000 IU s.c. alle 12h + MTPS (ein Bein)</td>
<td>UFH 5000 IU s.c. alle 12h (anderes Bein)</td>
<td>TVT-Rate RFUT 4% vs. 12% p&lt;0,004, Blutg. k.A.</td>
</tr>
<tr>
<td>Nicolaides et al., 1983 dreiarmige RCT ++ [490]</td>
<td>Abdominalchir. OP, n=150</td>
<td>IPK + MTPS // Elektr. Muskelstimulation</td>
<td>UFH 5000 IU alle 12h</td>
<td>TVT-Rate RFUT 4% vs. 18% vs. 9% p&lt;0,05 (4% vs. 9% n.s.), Blutg. k.A.</td>
</tr>
<tr>
<td>Fasting et al., 1985, RCT --- [166]</td>
<td>Allgemeinchir. OP, n=112</td>
<td>MTPS</td>
<td>UFH 5000 IU s.c. alle12h</td>
<td>TVT-Rate RFUT 5,8% vs. 8,9% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Wille-Jørgensen et al., 1985, RCT --- [491]</td>
<td>Abdominalchir. OP, n=176</td>
<td>UFH 5000 IU s.c. alle12h + MTPS</td>
<td>UFH 5000 IU s.c. alle12h</td>
<td>TVT-Rate RFUT + phleb. 2% vs. 12% p&lt;0,05, Blutg. k.A.</td>
</tr>
</tbody>
</table>
Evidenztabelle 11: Allgemeinchirurgische Eingriffe: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakkar et al., 1975, RCT ++ [495]</td>
<td>Allgemeinchir. OP (inkl. urol. u. gynäkol. OPs), n= 4471</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Keine Prophylaxe</td>
<td>Tödliche LE-Rate Autopsie 0,1% vs. 0,8% p&lt;0,005, Blutg. major 1,0% vs. 1,0% n.s.</td>
</tr>
<tr>
<td>Groote Schuur Hospital Thromboembolus Study Group, 1979, RCT +++ [496]</td>
<td>Elektive abdominale chir. OP, n=199</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Placebo s.c. alle 8h</td>
<td>VTE-Rate Autopsie 4% vs. 22% p&lt;0,01, Blutg. 8% vs. 4% n.s.</td>
</tr>
<tr>
<td>Negus et al., 1980, RCT ++ [497]</td>
<td>Abdominale chir. OP, n=105</td>
<td>UFH (1 IU/kg/h) i.v.</td>
<td>Placebo i.v.</td>
<td>VTE-Rate Autopsie 4% vs. 22% p&lt;0,01, Blutg. n.s.</td>
</tr>
<tr>
<td>Sasahara et al., 1984, fünfarmige RCT -+ [498]</td>
<td>Allgemeinchir. OP (abdominale chir. 79,3%, Becken 12,9%, Torax 7,8%), n=880</td>
<td>UFH/DHE 5000 IU s.c. // UFH/DHE 2500 IU s.c. // UFH 5000 IU s.c. alle 12h</td>
<td>DHE 0,5mg s.c. // Placebo s.c. alle 12h</td>
<td>TVT-Rate Autopsie 9,4% vs. 16,8% // 16,8% // 19,4% // 24,4% p&lt;0,05, Blutg. major 1,8% vs. 3,8% vs. 3,3% vs. 1,8% vs. 1,9% n.s.</td>
</tr>
<tr>
<td>Valle et al., 1988, RCT ++ [499]</td>
<td>Abdominal- oder thoraxchir. OP, n=100</td>
<td>NMH (Parnaparin) 3200 aXaU s.c. 2h präop., dann alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>VTE-Rate Duplex 0% vs. 6% n.s., Blutg. 0% vs. 2% n.s.</td>
</tr>
<tr>
<td>Ockelford et al., 1989, RCT ++ [500]</td>
<td>Große abdominale chir. OP, n=183</td>
<td>NMH (Dalteparin) 2500 aXaU s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>VTE-Rate Duplex 4,2% vs. 15,9% p=0,008, Blutg. minor 2,1% vs. 2,2% n.s.</td>
</tr>
<tr>
<td>Pezzuoli et al., 1989/90, RCT [501; 502]</td>
<td>Allgemeinchir. OP (abdominale chir. 64,8%), n= 4498</td>
<td>NMH (Nadroparin) 2850 aXaU s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>LE-Rate Autopsie 0,1% vs. 0,2% n.s., Blutg. major 3,0% vs. 1,3% p&lt;0,05</td>
</tr>
</tbody>
</table>
S3-Leitlinie Prophylaxe der venösen Thromboembolie (VTE)
2. komplett überarbeitete Auflage, Stand: 15.10.2015

### Evidenztabelle 12: Minimal-invasive Abdominaleingriffe: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marassi et al., 1993, RCT --- [503]</td>
<td>Abdominal-onkologische OP, n=81</td>
<td>NMH (Nadroparin) 3825 aXaU s.c. 2x am OP-Tag, dann alle 24h</td>
<td>Keine Prophylaxe</td>
<td>VTE-RateDUF 6,8% vs. 35,4% p&lt;0,01, Blutg-major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Bergqvist et al., 1996 RCT +++ [504]</td>
<td>Abdominalchir. OP (Notfall), n=80</td>
<td>NMH (Tinzaparin) 3500 aXaU</td>
<td>Placebo s.c. alle 24h</td>
<td>TVT-RateDUF 7,7% vs. 22,0% n.s., Blutg-major 2,5% vs. 0% k.A.z.Sign.</td>
</tr>
<tr>
<td>Ho et al, 1999, RCT + [-] [505]</td>
<td>Kolorektale OP, n=320</td>
<td>NMH (Enoxaparin) 20mg präop., dann 40mg s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>VTE-Rateinstdopp 0% vs. 3% p=0,045, Blutg-major 6,7% vs. 1,8% p=0,037</td>
</tr>
</tbody>
</table>

### Evidenztabelle 13: Allgemein-chirurgische Eingriffe: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baca et al., 1997, RCT --+ [507]</td>
<td>Laparoskopische Cholezystektomie (zu 89%), n=718</td>
<td>NMH (Reviparin 1750 IU s.c. alle 24h) + Physiotherapie</td>
<td>Physiotherapie</td>
<td>TVT/LE-Rateduplex. 0,5% vs. 0% n.s., Blutg. 5,0% vs. 4,4% n.s.</td>
</tr>
<tr>
<td>Mismetti et al., 2001, publikationsbasierte Meta-Analyse [198]</td>
<td>Allgemeinchir. OP (inkl. urol. u. gynäkol. OP), n= 17.995 Pat. in 41 Studien</td>
<td>NMH in niedriger oder hoher Dosis (&lt; oder &gt;3400 aXaU)</td>
<td>UFH in adäquater Dosierung</td>
<td>TVT-RateDiv.Meth. 3,6% vs. 3,8% n.s., Blutg-Wunde 4,7% vs. 5,3% n.s.</td>
</tr>
<tr>
<td>Haas et al., 2005, RCT +++ [187]</td>
<td>Allgemeinchir. OP (inkl. urol. u. gynäkol. OP), n= 23.078</td>
<td>NMH (Certoparin) 3000 IU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Tödl. LE-RateAutopsie 0,15% vs. 0,16% n.s.</td>
</tr>
</tbody>
</table>

3 Die Raten in der NMH-Gruppe wurden aus den Raten in der Kontrollgruppe x dem Relativem Risiko aus der Meta-Analyse berechnet.
### Evidenztabelle 14: Allgemeinchirurgische Eingriffe: Fondaparinux und Danaparoid vs. andere Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus et al., 1993, RCT+++ [508]</td>
<td>Onkologische OP (75% Abd., 25% Thx), n=513</td>
<td>Danaparoid (Organan) 750 aXaU s.c. alle 12h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Rate_phleb. 10,4% vs. 14,9% n.s., Blutg._major 1,1% vs. 1,5%</td>
</tr>
<tr>
<td>Agnelli et al., 2005, RCT+++ [281]</td>
<td>Abdominalchir. OP (hohes Risiko), n=2048</td>
<td>Fondaparinux 2,5mg s.c. alle 24h</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h</td>
<td>VTE-Rate_phleb. 4,6% vs. 6,1% n.s., Blutg._major 3,4% vs. 2,4%</td>
</tr>
<tr>
<td>Turpie et al., APOLLO, 2007, RCT++- [282]</td>
<td>Abdominalchir. OP (mittleres bis hohes Risiko), n=1309</td>
<td>IPK + Fondaparinux 2,5mg s.c. alle 24h für 7d</td>
<td>IPK</td>
<td>VTE-Rate_phleb. 1,7% vs. 5,3%, p=0,004, Blutg._major 1,6% vs. 0,2%, p= 0,006</td>
</tr>
</tbody>
</table>

### Evidenztabelle 15: Allgemeinchirurgische Eingriffe: Kurze vs. fortgesetzte medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lausen et al., 1998, RCT+- [509]</td>
<td>Allgemeinchir. OP, n=176</td>
<td>NMH (Tinzaparin) 3500IU s.c. alle 24h + MTPS 4 Wo</td>
<td>NMH (Tinzaparin) 3500IU s.c. alle 24h +MTPS 1 Wo</td>
<td>TVT-Rate_phleb. 5,2% vs. 10% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Bergqvist et al., 2002, RCT ++ [92]</td>
<td>Onkologische OP, n=332</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h über 28d</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h 6-10d, dann Placebo s.c. 21d</td>
<td>VTE-Rate_phleb. 4,8% vs. 12% p=0,02, Blutg._major 1,2% vs. 0,4%</td>
</tr>
<tr>
<td>Rasmussen et al., 2006, RCT +++ [510]</td>
<td>Allgemeinchir. OP, n=427</td>
<td>NMH (Dalteparin) 5000 IU s.c. über 28d</td>
<td>NMH (Dalteparin) 5000 IU s.c. über 7d</td>
<td>VTE-Rate_phleb. 7,3% vs. 16,3%, p = 0,012, Blutg._major 0,5% vs. 1,8% n.s.</td>
</tr>
</tbody>
</table>

### Evidenztabelle 16: Minimal-invasive Abdominaleingriffe: Kurze vs. fortgeführte medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tincani et al., 2004, RCT --- [131]</td>
<td>Laparoskop. Eingriffe (66% Cholezystektomien), n=209</td>
<td>NMH (Dalteparin 2500 o. 5000 IU s.c. alle 24h) bis Entlassung (4d) und dann für 1 Wo.</td>
<td>NMH (Dalteparin 2500 o. 5000 IU s.c. alle 24h) bis Entlassung (4d)</td>
<td>TVT/LE-Rate_kompres. 0% vs. 0,95%, Blutg. 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>
4.1.5 Operationen und Verletzungen an Gelenken, Knochen und Weichteilen der oberen Extremität

Hierzu wurde keine Evidenz aus hochwertigen randomisierten Studien identifiziert.

4.1.6 Operationen und Verletzungen an Gelenken, Knochen und Weichteilen der unteren Extremität

4.1.6.1 Schenkelhalsfraktur und Hüftgelenkendoprothetik

Evidenztable 17: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Stellenwert physikalischer Maßnahmen

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull et al., 1990, RCT ++ [511]</td>
<td>Elektiver Hüftgelenkersatz, n=310</td>
<td>IPK + KG</td>
<td>Keine Prophylaxe + KG</td>
<td>TVT-RateRFUT 24% vs. 49% p=0,00001, Blutg. k.A.</td>
</tr>
<tr>
<td>Fordyce et al., 1992, RCT ++ [512]</td>
<td>Hüftgelenkersatz, n=84</td>
<td>A-V Impulssystem (OP Bein) + MTPS</td>
<td>MTPS</td>
<td>TVT-Ratephleb. 5% vs. 40% p&lt;0,001, Blutg. n.s.</td>
</tr>
<tr>
<td>Stranks et al., 1992, RCT --- [513]</td>
<td>Schenkelhalsfraktur (TEP), n=82</td>
<td>A-V Impulssystem (OP Bein)</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratedoppler 0% vs. 23% p&lt;0,01, Blutg. k.A.</td>
</tr>
<tr>
<td>Bradley et al., 1993, RCT ++ [514]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n=74</td>
<td>A-V Impulssystem + UFH 5000 IU s.c. + Hydroxychloroquin sulfat 400mg alle 12h</td>
<td>UFH 5000 IU s.c. + Hydroxychloroquin sulfat 400mg alle 12h</td>
<td>TVT-Ratephleb. 6,6% vs. 27,3% p&lt;0,025, Blutg. k.A.</td>
</tr>
<tr>
<td>Fisher et al., 1995, RCT +--- [356]</td>
<td>Schenkelhals- oder Beckenfrakturen, n=304</td>
<td>IPK (beidseitig)</td>
<td>Keine Prophylaxe</td>
<td>VTE-Rateduplex 4,1% vs. 11,3% p= 0,02, Blutg. k.A.</td>
</tr>
<tr>
<td>Asano et al., 2001, RCT --- [515]</td>
<td>Hüft-OPs, n=62</td>
<td>A-V Impulssystem (OP-Bein)+ elastische Wickel</td>
<td>Elastische Wickel</td>
<td>LE-Rateszinti 21% vs. 55% p=0,008, Blutg. k.A.</td>
</tr>
<tr>
<td>Anders et al., 2004, RCT --- [175]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n=104</td>
<td>A-V Impulssystem (OP-Bein) 24h + NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h</td>
<td>NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h</td>
<td>LE-Rateszinti 10% vs. 15% p= n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Ivanic et al., 2006, RCT ++ [516]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n=41</td>
<td>A-V Impulssystem (OP-Bein) 2h/d + MTPS + NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>MTPS + NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>TVT-Rateduplex 0% vs. 10% k.A.z.Sign., Blutg. k.A.</td>
</tr>
<tr>
<td>Cohen et al., 2007, RCT ++ [517]</td>
<td>Elektiver Hüftgelenkersatz (95%) oder Schenkelhalsfraktur, n=874</td>
<td>MTPS für 6 Wo. + Fondaparinux 2,5mg s.c. alle 24h für 1 Wo.</td>
<td>Fondaparinux 2,5mg s.c. alle 24h für 1 Wo.</td>
<td>TVT-Rateduplex 4,1% vs. 4,8% n.s., Blutg. minor 6,3% vs. 7,1% n.s.</td>
</tr>
</tbody>
</table>
Evidenztabelle 18: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Physikalische Maßnahmen vs. medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paiement et al., 1987, RCT -++ [518]</td>
<td>Hüftgelenkersatz (TEP), n=163</td>
<td>External pneumatic compression boots (IPK)</td>
<td>Warfarin (niedrig dosiert, nach PTT) p.o. alle 14h</td>
<td>TVT-Ratephleb. 16,6% vs. 16,7% n.s., keine Blutg.</td>
</tr>
<tr>
<td>Bailey et al., 1991, RCT -++ [519]</td>
<td>Hüftgelenkersatz (TEP), n=95</td>
<td>Sequential compression devices + MTPS</td>
<td>Warfarin (niedrig dosiert, nach PTT) p.o. alle 24h + MTPS</td>
<td>TVT-Ratephleb. 6,0% vs. 26,6% p&lt;0,006, Blutg. k.A.</td>
</tr>
<tr>
<td>Francis et al., 1992, RCT ++ [520]</td>
<td>Hüftgelenkersatz (TEP), n=232</td>
<td>External pneumatic compression (IPK) + MTPS</td>
<td>Warfarin (niedrig dosiert, nach PT) p.o. alle 24h, 10-14d pré-OP beginnend + MTPS</td>
<td>TVT-Ratephleb. 27% vs. 31% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Santori et al, 1994, RCT ++ [521]</td>
<td>Hüftgelenkersatz (TEP), n=132</td>
<td>A-V Impulssystem + MTPS + KG</td>
<td>UFH 5000 IU s.c. alle 8h + MTPS + KG</td>
<td>TVT-Ratephleb. 13,4% vs. 35,4% p&lt;0,005, Blutg.major 0% vs. 13,8%</td>
</tr>
<tr>
<td>Kalodiki et al., 1996, RCT +++ [522]</td>
<td>Elekter Hüftgelenkersatz, n=78</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTPS</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>TVT-Ratephleb. 25% vs. 38% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Stannard et al., 1996, dreiarmige RCT -++ [523]</td>
<td>Elekter Hüftgelenkersatz (TEP), n=75</td>
<td>IPK // IPK mit Heparin und Aspirin</td>
<td>UFH 5000IU s.c. alle 12h für 3d, dann Aspirin 325mg p.o. alle 24h</td>
<td>VTE-Rateduplex 0% vs. 0% vs. 1,25% p=0,009, Blutg.minor physik.&lt;medik., p&lt;0,05</td>
</tr>
<tr>
<td>Stone et al., 1996, RCT --&gt; [524]</td>
<td>Hüftgelenkersatz (TEP), n=50</td>
<td>IPK</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>TVT-Ratephleb. 4% vs. 4% n.s., Blutg.major 12% vs. 24% n.s.</td>
</tr>
<tr>
<td>Warwick et al., 1998, RCT ++ [525]</td>
<td>Hüftgelenkersatz (TEP), n=290</td>
<td>A-V Impulssystem + MTPS</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTPS</td>
<td>VTE-Ratephleb. 18% vs. 13% n.s., Blutg.minor 44% vs. 86% p&lt;0,05</td>
</tr>
<tr>
<td>Pitto et al., 2004, RCT --&gt; [526; 527]</td>
<td>Hüftgelenkersatz (TEP), n= 200</td>
<td>Fußpumpensystem (A-V Impulssystem) + MTPS</td>
<td>NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h + MTPS</td>
<td>TVT-Ratephleb. 3% vs. 6% p&lt;0,05, Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 19: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Medikamentöse Prophylaxe vs. keine Prophylaxe

(Die Meta-Analyse von Zufferey erfüllt die üblichen methodischen Standards, die Meta-Analyse von Collins weist einige Schwächen auf, z.B. keine Testung auf Publikationsbias.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collins et al., 1988, publikations-basierte Meta-Analyse [162]</td>
<td>Große unfallchirurgisch-orthopädische OP, n= 1254 Pat. in 21 Studien</td>
<td>UFH in verschiedenen Dosierungen</td>
<td>Placebo oder keine Prophylaxe</td>
<td>TVT-RateDiv.Meth. 23,8% vs. 47,5% p&lt; 0,001, Blutg.major 3,5% vs. 2,9% n.s.</td>
</tr>
</tbody>
</table>
### Evidenztabelle 20: Schenkelhalsfraktur und Hüftgelenkendoprothetik: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zufferey et al., 2003, publikations-basierte Meta-Analyse [528]</td>
<td>Große unfallchirurgisch-orthopädische OP, n=1695 Pat. in 13 Studien (11 zum Hüftgelenkersatz)</td>
<td>NMH in verschiedenen Dosierungen (3000 bis 6000 aXaU), prä- oder postop. Beginn</td>
<td>Placebo (in 11/13 Studien)</td>
<td>TVT-RateDiv.Meth. 24,9% vs. 48,9% p&lt; 0,001, Blutg.Wunde 7,4% vs. 5,4% n.s.</td>
</tr>
</tbody>
</table>

### Evidenztabelle 20: Schenkelhalsfraktur und Hüftgelenkendoprothetik: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barre et al., 1987, RCT +++ [529]</td>
<td>Hüftgelenkersatz (TEP), n=80</td>
<td>NMH (Kabi2165) 2500 aXaU s.c. alle 12h</td>
<td>UFH s.c alle 8h (nach PTT)</td>
<td>TVT-Ratephleb. 17,5% vs. 10% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Lassen et al., 1988, dreiamige RCT ++ [530]</td>
<td>Hüftgelenkersatz (TEP), n=356</td>
<td>NMH/DHE 1500 aPTTU s.c. alle 24h</td>
<td>UFH/DHE 5000 aXaU s.c. alle 12h // Placebo alle 12h</td>
<td>TVT-RateRFUT 30% vs. 33% n.s. vs. 55% p&lt;0,01, Blutg. n.s.</td>
</tr>
<tr>
<td>Planes et al., 1988, RCT ++ [531]</td>
<td>Elektiver Hüftgelenkersatz, n=237</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + elastische Wickel</td>
<td>UFH 5000 IU alle 8h + elastische Wickel</td>
<td>TVT-Ratephleb. 12,5% vs. 25,0% p=0,03, Blutg. n.s.</td>
</tr>
<tr>
<td>Dechavanne et al., 1989, dreiamige RCT ++ [532]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n=124</td>
<td>NMH (Kabi 2165) 2500 aXaU s.c. alle 12h // 5000 aXaU s.c. alle 24h</td>
<td>UFH s.c. (nach aPTT)</td>
<td>TVT-RateRFUT 4,9% vs. 7,3% vs. 10% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Monreal et al., 1989, RCT +++ [533]</td>
<td>Hüftgelenknahe Frakturen, n=90</td>
<td>NMH 7500 aXaU s.c. alle 12h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-RateRFUT 20% vs. 29% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Pini et al., 1989, RCT ++ [534]</td>
<td>Hüftgelenknahe Frakturen, n=49</td>
<td>NMH 7500 aXaU s.c. alle 12h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>VTE-Ratephleb. 30,4% vs. 13,6% p=0,041, Blutg.major 4,3% vs. 2,3% k.A.z.Sign.</td>
</tr>
<tr>
<td>Eriksson et al., 1991, RCT ++ [535]</td>
<td>Elektiver Hüftgelenkersatz, n=136</td>
<td>NMH (Dalteparin) 5000 aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c alle 8h + elastische Wickel</td>
<td>TVT-Ratephleb. 30% vs. 42% n.s., Blutg.major 1% vs. 7% n.s.</td>
</tr>
<tr>
<td>Freick und Haas, 1991, RCT + [536]</td>
<td>Elektiver Hüftgelenkersatz, n=110</td>
<td>NMH (Certoparin) + DHE 1500 aPTTU s.c. alle 24h</td>
<td>UFH + DHE 5000 IU s.c. alle 12h</td>
<td>TVT-Ratephleb. 9,6% vs. 25% k.A.z.Sign., Blutg. major 0% vs. 3,6% k.A.z.Sign.</td>
</tr>
<tr>
<td>Levine et al., 1991, RCT ++ [537]</td>
<td>Elektiver Hüftgelenkersatz, n=665</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>UFH 7500 IU s.c alle 12h</td>
<td>TVT-RateRFUT 19,4% vs. 23,3% n.s., Blutg.major 3,3% vs. 5,7% n.s.</td>
</tr>
<tr>
<td>Leyvraz et al., 1991, RCT ++ [538]</td>
<td>Hüftgelenkersatz (TEP), n=349</td>
<td>NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h + MTPS</td>
<td>UFH s.c. alle 8h (nach aPTT) + MTPS</td>
<td>TVT-Ratephleb. 12,6% vs. 16,0% n.s., Blutg.major 0,5% vs. 1,5% k.A.z.Sign.</td>
</tr>
<tr>
<td>Weber et al., 1991, RCT ++ [539]</td>
<td>Elektiver Hüftgelenkersatz, n=105</td>
<td>NMH 2500 aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-RateRFUT 50,0% vs. 30,6% n.s., Blutg. n.s.</td>
</tr>
</tbody>
</table>

4 Die Raten in der NMH-Gruppe wurden aus den Raten in der Kontrollgruppe x dem Relativen Risiko aus der Meta-Analyse berechnet.
<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHAT-Group, 1992, RCT +++ [540]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n=341</td>
<td>NMH (Nadroparin) 48mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Ratephleb. 27,5% vs. 29,7% n.s., Blutg.major 1,2% vs. 1,2% n.s.</td>
</tr>
<tr>
<td>Eriksson et al., 1993, RCT +++ [541]</td>
<td>Hüftgelenkersatz (TEP), n=136</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Ratephleb. 30% vs. 42% n.s., Blutg.major 1,5% vs. 10,8% k.A.z.Sign.</td>
</tr>
<tr>
<td>Colwell et al., 1994, dreiarme RCT ++ [542]</td>
<td>Elektiver Hüftgelenkersatz, n=610</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h / NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Ratephleb. 5% vs. 15% und 12% p&lt;0,05, Blutg.major 4% vs. 1% vs. 6% n.s.</td>
</tr>
<tr>
<td>Avikainen et al., 1995, RCT ++ [543]</td>
<td>Hüftgelenkersatz (TEP), n=167</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Ratesono.(k.A.) 1,2% vs. 4,8% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Colwell et al., 1995, RCT ++ [544]</td>
<td>Hüftgelenkersatz, n=1940</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>UFH 7500 IU s.c. alle 12h</td>
<td>TVT-Ratephleb. 12% vs. 16% n.s., Blutg.major 4% vs. 6% n.s.</td>
</tr>
<tr>
<td>Hoffmann et al., 1996, RCT ++ [545; 546]</td>
<td>Hüftgelenknahe Frakuren, n=167</td>
<td>NMH (Certoparin) 3000 IU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Ratephleb. 13,4% vs. 26,7% n.s., Blutg.major 0% vs. 6,4% k.A.z.Sign.</td>
</tr>
<tr>
<td>Kakkar et al., 2000, RCT +++ [288]</td>
<td>Elektiver Hüftgelenkersatz, n=300</td>
<td>NMH (Bemiparin) 3500 aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>VTE-Ratephleb. 7,2% vs. 18,7% p&lt;0,01, Blutg.major 3,4% vs. 4,0% n.s.</td>
</tr>
<tr>
<td>Senaran et al. 2006, RCT ++ [547]</td>
<td>Hüftgelenkersatz (TEP), n=100</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>VTE-Rateduplex 4% vs. 4% n.s., Blutg.major 4% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 21: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Kumarin vs. Heparin

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harris et al., 1974, vierarmige RCT ++ [548]</td>
<td>Hüftgelenkersatz, n=71</td>
<td>Warfarin (p.o. nach Quick) + MTPS</td>
<td>UFH 5000 IU s.c. alle 8h + MTPS</td>
<td>TVT-Ratephleb. 32% vs. 55% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Morris und Mitchell, 1976, RCT ++ [549]</td>
<td>Schenkelhalsfraktur, n=207</td>
<td>Warfarin (nach Quick)</td>
<td>Keine Prophylaxe</td>
<td>TVT-RaterRFUT 31% vs. 68% p&lt;0,001, Blutg.major 10% vs. 0% k.A.z.Sign.</td>
</tr>
<tr>
<td>Francis et al., 1997, RCT ++ [550]</td>
<td>Hüftgelenkersatz, n=580</td>
<td>Warfarin (p.o. nach INR (2,5))</td>
<td>NMH (Dalteparin 5000 IU s.c. alle 24h)</td>
<td>TVT-Ratephleb. 49% vs. 28% p&lt;0,006, Blutg.major 1% vs. 2% n.s.</td>
</tr>
<tr>
<td>Colwell et al., 1999, RCT ++ [551]</td>
<td>Hüftgelenkersatz (TEP), n=3011</td>
<td>Warfarin p.o. nach INR (2-3)</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>VTE-Ratekin.(phleb. 1,1% vs 0,3% p=0,0083, Blutg.major 0,5% vs. 1,2% n.s.</td>
</tr>
<tr>
<td>Hull et al., 2000, dreiarme RCT +++ [327]</td>
<td>Hüftgelenkersatz, n=1472</td>
<td>Warfarin (oral, nach INR (2-3))</td>
<td>NMH (Dalteparin 5000 IU s.c. alle 24h, Beginn prä-OP bzw. post-OP</td>
<td>TVT-Ratephleb. 24,0% vs. 10,7% und 13,1% p&lt;0,01, Blutg.major 0,4 vs. 0,001.</td>
</tr>
</tbody>
</table>
Evidenztabelle 22: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Fondaparinux vs. andere oder keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lassen et al. (EPHESUS), 2002, RCT +++ [552]</td>
<td>Elektiver Hüftgelenknersatz, n=2309</td>
<td>Fondaparinux 2,5mg s.c. alle 24h</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>VTE-Rate phleb. 4% vs. 9% p&lt;0,0001, Blutg. major 4,1% vs. 2,8% n.s.</td>
</tr>
<tr>
<td>Eriksson et al. (PENTHIFRA), 2001, RCT +++ [553]</td>
<td>Hüftgelenknahe Frakturen, n=1711</td>
<td>Fondaparinux 2,5mg s.c. alle 24h</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>VTE-Rate phleb. 8,3% vs. 19,1% p&lt;0,001, Blutg. major 0,5% vs. 1,2% n.s.</td>
</tr>
<tr>
<td>Turpie et al. (PENTATHLON), 2002, RCT +++ [132]</td>
<td>Elektiver Hüftgelenknersatz, n=2275</td>
<td>Fondaparinux 2,5mg s.c. alle 24h</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>VTE-Rate phleb. 6% vs. 8% n.s., Blutg. major 1,7% vs. 0,9% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 23: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Heparinoid vs. andere oder keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerhart et al., 1991, RCT ++ [554]</td>
<td>Schenkelhalsfraktur, n=263</td>
<td>Heparinoid (ORG 10172 Lomoparan) 750 aXaU s.c. alle 12h bis 9. po. OP Tag, ab 7. po. Tag + Warfarin</td>
<td>Warfarin (nach Prothrombinzeit: 1,5fach)</td>
<td>TVT-Rater FUT 7% vs. 21% p&lt;0,001, Blutg. major 6,0% vs. 3,8% n.s.</td>
</tr>
<tr>
<td>Hoek et al., 1992, RCT ++ [555]</td>
<td>Elektiver Hüftgelenkatersatz, n=197</td>
<td>Heparinoid (ORG 10172 Lomoparan) 750 aXaU s.c. alle 12h</td>
<td>Placebo s.c. alle 12h</td>
<td>TVT-Rate phleb. 15,5% vs. 56,6% p&lt;0,001, Blutg. minor 6,1% vs. 0% p&lt;0,05</td>
</tr>
<tr>
<td>Gent et al., 1996, RCT +++ [556]</td>
<td>Hüftgelenknahe Frakturen, n=251</td>
<td>Heparinoid (Danaparoid) 750 aXaU s.c. alle 12h</td>
<td>Aspirin 100mg p.o. alle 12h</td>
<td>TVT-Rate FUT 27,8% vs. 44,3% p=0,028, Blutg. major 1,6% vs. 6,4% n.s.</td>
</tr>
<tr>
<td>Bergqvist et al. (TIFTED), 1999, dreiarmmige RCT ++ [557]</td>
<td>Hüftgelenknahe Frakturen, n=197</td>
<td>Heparinoid (Danaparoid) 750 aXaU s.c. alle 12h</td>
<td>NMH (Enoxaparin) 40 mg s.c. alle 24h / Dalteparin 5000 IU s.c. alle 24h</td>
<td>TVT-Rate phleb. 5,7% vs. 15,4% vs. 8,8% n.s., Blutg. major 1,5% vs. 3,0% vs. 1,5% n.s.</td>
</tr>
</tbody>
</table>
## Evidenztabelle 24: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Prä- vs. postoperativer Beginn der medikamentösen Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planès et al., 1991, RCT ++ [558]</td>
<td>Hüftgelenkersatz unter Spinalanästhesie, n=188</td>
<td>NMH (Enoxaparin 20 mg s.c. präop, dann 40 mg s.c. alle 24h)</td>
<td>NMH (Enoxaparin 40mg s.c. alle 24h po.)</td>
<td>TVT-Ratephleb. 11,7% vs. 17,0% n.s., Blutg. major 1,6% vs. 1,5% n.s.</td>
</tr>
<tr>
<td>Laguardia et al., 1992, RCT ++ [559]</td>
<td>Hüftgelenkersatz, n=40</td>
<td>NMH (Parnaparin 15000 IU s.c. alle 24h beginnend 2h präop.)</td>
<td>NMH (Enoxaparin 40mg s.c. alle 24h beginnend po.)</td>
<td>TVT-Ratephleb. 5,3% vs. 4,8% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Jorgensen et al., 1998, RCT ++ [560]</td>
<td>Schenkelhalsfraktur, n=239</td>
<td>NMH (Enoxaparin 40mg s.c. alle 24h beginnend po.)</td>
<td>NMH (Enoxaparin 40mg s.c. alle 24h beginnend po.)</td>
<td>TVT-Ratephleb. 12% vs. 21% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Hull et al., 2000, RCT +++ [327]</td>
<td>Hüftgelenkersatz, n=1472</td>
<td>NMH (Dalteparin) 5000IU s.c. alle 24h, beginnend mit 2500 IU 2h präop.</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h, beginnend 4h po.</td>
<td>TVT-Ratephleb. 10,7% vs. 13,1% k.A.z. Sign., Blutg. major 2,2% vs. 0,8% k.A.z. Sign.</td>
</tr>
</tbody>
</table>

## Evidenztabelle 25: Schenkelhalsfraktur und Hüftgelenkendoprothetik: Kurze vs. fortgeführte medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergqvist et al., 1996, RCT -++ [561; 562]</td>
<td>Hüftgelenkersatz, n=262</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h für 28d.</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h für 10-11d, dann Placebo s.c. alle 24h für 17-18d</td>
<td>TVT-Ratephleb. 18% vs. 39% p&lt;0,001, Blutg. major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Planès et al., 1996, RCT +++ [563-565]</td>
<td>Hüftgelenkersatz (TEP), n=179</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h für 5 Wo.</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h für 2 Wo, dann Placebo s.c. alle 24h für 3 Wo.</td>
<td>TVT-Ratephleb. 7,1% vs. 19,3% p=0,018 Blutg. minor 18,9% vs. 4,5% k.A.z. Sign.</td>
</tr>
<tr>
<td>Dahl et al., 1997, RCT -++ [331]</td>
<td>Hüftgelenkersatz, n=308</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h + Dextran + MTPS für 1 Wo., dann NMH (Dalteparin) 5000 IU s.c. alle 24h für 4 Wo.</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h + Dextran + MTPS für 1 Wo., dann Placebo s.c. alle 24h für 3 Wo.</td>
<td>VTE-Ratephleb./szinti./röntg. 19,3% vs. 31,7% p=0,034, Blutg. n.s.</td>
</tr>
<tr>
<td>Lassen et al., 1998, RCT +++ [332]</td>
<td>Hüftgelenkersatz (TEP), n=281</td>
<td>NMH (Dalteparin) 5000 aXaU s.c. alle 24h für 35d</td>
<td>NMH (Dalteparin) 5000 aXaU s.c. alle 24h für 7d, dann Placebo s.c. alle 24h für 28d</td>
<td>TVT-Ratephleb. 4,4% vs. 11,8% p=0,039, Blutg. minor 12,8% vs. 7,8% k.A.z. Sign.</td>
</tr>
<tr>
<td>Manganelli et al., 1998, RCT --- [566]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n= 79</td>
<td>UFH (5000 IU alle 8 h) für 30 Tage</td>
<td>UFH (5000 IU alle 8 h) für 12 Tage</td>
<td>TVT-Ratephleb. 12% vs. 21% n.s., Blutg. minor 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Haentjens et al., 2000, RCT --- [567]</td>
<td>Elektiver Hüftgelenkersatz (TEP), n=296</td>
<td>NMH (Nadroparin) s.c. für 3 Wo. nach Entlassung</td>
<td>Keine nach Krankenhausentlassung fortgeführte Prophylaxe</td>
<td>TVT-Ratephleb. 1,3% vs. 6,4% p=0,021, Blutg. minor 3,2% vs. 0% k.A.z. Sign.</td>
</tr>
</tbody>
</table>
## 4.1.6.2 Kniegelenkendoprothetik

### Evidenztabelle 26: Kniegelenkendoprothetik: Physikalische Maßnahmen vs. keine Prophylaxe, Vergleich physikalischer Maßnahmen untereinander

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull et al., 1979, RCT ++ [572]</td>
<td>Große Knie OP, n=61</td>
<td>IPK (Unterschenkel)</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratephleb. 6% vs. 66% p&lt;0,01, Blutg. k.A.</td>
</tr>
<tr>
<td>McKenna et al., 1980, vierarmige RCT --- [573]</td>
<td>Kniegelenksersatz (TEP), n=46</td>
<td>IPK (Unter- und Oberschenkel)</td>
<td>Keine Prophylaxe // Aspirin 325 mg alle 8 h // Aspirin 1,3 mg alle 8 h</td>
<td>TVT-Ratephleb. 10% vs. 75% vs. 78% vs. 8% p&lt;0,01, Blutg. k.A.</td>
</tr>
<tr>
<td>Lynch et al., 1988, RCT +++ [574]</td>
<td>Kniegelenksersatz (TEP), n=150</td>
<td>Continuous passive motion machine + KG + Aspirin 650mg p.o. alle 12h</td>
<td>KG + 650mg Aspirin p.o. alle 12h</td>
<td>TVT-Ratephleb. 45,3% vs. 37,3% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Wilson et al., 1992, RCT -- [575]</td>
<td>Kniegelenksersatz, n=60</td>
<td>A-V Impulssystem</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratephleb. 50% vs. 68,7% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Westrich et al., 1996, RCT ++ [576]</td>
<td>Kniegelenksersatz (TEP), n=164 (Kniee)</td>
<td>Aspirin 325mg p.o. alle 12h + pulsatile pneumatische Fußpumpe</td>
<td>Aspirin 325mg p.o. alle 12h</td>
<td>TVT-Ratephleb. 27% vs. 59% p=0,001, Blutg. n.s.</td>
</tr>
<tr>
<td>Lachiewicz et al., 2004, RCT ++ [577]</td>
<td>Kniegelenksersatz (TEP), n= 472 (Kniee)</td>
<td>RIAC (rapid inflation asymmetrical compression device) + MTPS + Aspirin 650mg p.o. alle 12h</td>
<td>SCD (sequential circumferential compression device) + MTPS + Aspirin 650mg p.o. alle 12h</td>
<td>TVT-Ratephleb. 6,9% vs. 15,0% p=0,007, Blutg. k.A.</td>
</tr>
</tbody>
</table>
### Evidenztabelle 27: Kniegelenkendoprothetik: Stellenwert der physikalischen Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norgren et al., 1998, RCT ++ [578]</td>
<td>Kniegelenkersatz, n=40</td>
<td>Fußpumpe + MTX</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>TVT-Ratephb. 27% vs. 0% p&lt;0,05, Blutg. n.s.</td>
</tr>
<tr>
<td>Rader et al., 1998, RCT ++ [579]</td>
<td>Kniegelenkersatz (TEP), n=160</td>
<td>Sprunggelenkbe- wegungsschiene + NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>TVT-Ratephb. 2,2% vs. 11,4% p&lt;0,05, Blutg. n.s.</td>
</tr>
<tr>
<td>Blanchard et al., 1999, RCT ++ [580]</td>
<td>Elektiver Kniegelenkersatz, n=130</td>
<td>IPK (A-V Impulssystem)</td>
<td>NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h</td>
<td>TVT-Ratephb. 64,6% vs. 26,7% p&lt;0,001, Blutg.major 0% vs. 1,5% n.s.</td>
</tr>
<tr>
<td>Warwick et al., 2002, RCT ++ [581]</td>
<td>Kniegelenkersatz (TEP), n=229</td>
<td>A-V Impuls Fußpumpe + MTX</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTX</td>
<td>TVT-Ratephb. 58% vs. 54% n.s., Blutg.major 0% vs. 3,7% k.A.z.Sign.</td>
</tr>
</tbody>
</table>

### Evidenztabelle 28: Kniegelenkendoprothetik: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leclerc et al., 1992, RCT +++ [582]</td>
<td>Große Knie-OP, n=131</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>Placebo s.c. alle 12h</td>
<td>TVT-Ratephb. 19% vs. 65% p=0,0001, Blutg.insg. 6% vs. 8% n.s.</td>
</tr>
<tr>
<td>Levine et al., 1996, RCT +++ [583]</td>
<td>Große Knie-OP, n=246</td>
<td>NMH (Ardeparin) gewichtsadaptiert s.c. alle 12h + MTX</td>
<td>Placebo s.c. alle 12h + MTX</td>
<td>VTE-Ratephb. 29,7% vs. 58,7% p&lt;0,001, Blutg.major 2,6% vs. 2,4% n.s.</td>
</tr>
<tr>
<td>Wang et al., 2004, RCT ++ [584]</td>
<td>Kniegelenkersatz (TEP), n=150</td>
<td>NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratephb. 50% vs. 71% p=0,042, Blutg. k.A.</td>
</tr>
</tbody>
</table>

### Evidenztabelle 29: Kniegelenkendoprothetik: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faunø et al., 1994, RCT ++ [126]</td>
<td>Kniegelenkersatz (TEP), n=185</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTX</td>
<td>UFH 5000 IU s.c. alle 8h + MTX</td>
<td>TVT-Ratephb. 23% vs. 27% n.s., Blutg. n.s.</td>
</tr>
</tbody>
</table>

### Evidenztabelle 30: Kniegelenkendoprothetik: Kumarin vs. NMH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leclerc et al., 1996, RCT +++ [585]</td>
<td>Kniegelenkersatz, n=670</td>
<td>Warfarin p.o. nach INR (2-3) alle 24h</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>TVT-Ratephb. 51,7% vs. 36,9% p=0,003, Blutg.major 1,8% vs. 2,1% n.s.</td>
</tr>
<tr>
<td>Heit et al., 1997, RCT ++ [586]</td>
<td>Kniegelenkersatz, n=860</td>
<td>Warfarin p.o. nach INR (2-3) alle 24h</td>
<td>NMH (Ardeparin) gewichtsadaptiert (50 aXaU/kg) s.c. alle 12h</td>
<td>TVT-Ratephb. 38% vs. 27% p&lt;0,019, Blutg.major 4,4% vs. 7,9% n.s.</td>
</tr>
</tbody>
</table>
### Evidenztabelle 31: Kniegelenkendoprothetik: Fondaparinux vs. andere oder keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fitzgerald et al., 2001, RCT ++ [587]</td>
<td>Kniegelenkersatz, n=349</td>
<td>Warfarin p.o. nach INR (2-3) p.o. alle 24h</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>VTE-Ratephleb. 45% vs. 25% p=0,0001, Blutz.maj.2,3% vs. 5,2% n.s.</td>
</tr>
</tbody>
</table>

### 4.1.6.3 Hüft- und Kniegelenkendoprothetik gemischt

#### Evidenztabelle 32: Hüft- und Kniegelenkendoprothetik gemischt: Physikalische Maßnahmen vs. keine zusätzliche Prophylaxe, Vergleich physikalischer Maßnahmen

(Die Studie von Eisele et al. [588] wurde aufgrund schwerer methodischer Schwächen nicht berücksichtigt.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hui et al., 1996, RCT --- [589]</td>
<td>Hüft- oder Kniegelenkersatz (TEP), n=177</td>
<td>MTPS bis zur Hüfte // MTPS bis zum Knie</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratephleb. 40% vs. 60% vs. 57% n.s., Blutz.k.A.</td>
</tr>
<tr>
<td>Silbersack et al., 2003, RCT --&gt; [588]</td>
<td>Hüft- oder Kniegelenkersatz (TEP), n=131</td>
<td>IPK + NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>MTPS + NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>TVT-Ratekompres. 0% vs. 28,6% p&lt;0,0001, Blutz. n.s.</td>
</tr>
</tbody>
</table>

#### Evidenztabelle 33: Hüft- und Kniegelenkendoprothetik gemischt: Physikalische Maßnahmen vs. medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaempffe et al., 1991, RCT ++ [590][284]</td>
<td>Hüft- oder Kniegelenkersatz (TEP), n=149</td>
<td>IPK</td>
<td>Warfarin (p.o. nach PT bei 15sek.)</td>
<td>TVT-Ratephleb. 25% vs. 25% n.s., Blutg. n.s.</td>
</tr>
</tbody>
</table>

#### Evidenztabelle 34: Hüft- und Kniegelenkendoprothetik gemischt: Medikamentöse Prophylaxe mit Heparin vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agarwala et al., 2003, RCT --&gt; [591]</td>
<td>Große OP untere Extremität, n=104</td>
<td>NMH (Dalteparin) 2500 IU s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratephleb. 43,2% vs. 60% p&lt;0,05, Blutz. k.A.</td>
</tr>
</tbody>
</table>
### Evidenztable 35: Hüft- und Kniegelenkendoprothetik gemischt: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringeisen und Matzen, 1995, RCT ↔ [592]</td>
<td>Hüftgelenkersatz oder andere orthopädische OPs, n=168</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h + MTPS + KG</td>
<td>UFH 5000 IU s.c. alle 8h + MTPS + KG</td>
<td>TVT-Raterfut 4,8% vs. 9,5% n.s., Blutg n.s.</td>
</tr>
<tr>
<td>Rader et al., 1997/98, RCT ↔ [593; 594]</td>
<td>Hüft- oder Kniegelenkersatz (TEP), n=246</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h + MTPS</td>
<td>UFH 5000 IU / 7500 IU (PTT-gesteuert: 40sek.) s.c. alle 8h + MTPS</td>
<td>TVT-Ratetime duplex 6,1% vs. 1,7% k.Az.Sign., Blutg. n.s.</td>
</tr>
</tbody>
</table>

### Evidenztable 36: Hüft- und Kniegelenkendoprothetik gemischt: Kumarin vs. NMH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hull et al., 1993, RCT -++ [595]</td>
<td>Elektiver Hüft- oder Kniegelenkersatz (TEP), n=1436</td>
<td>Warfarin (p.o. nach INR)</td>
<td>NMH (Tinzaparin gewichtsadaptiert s.c. alle 24h</td>
<td>TVT-Rathemphleb., 37,4% vs. 31,4% p=0,03, Blutg.maj. 2,8% vs. 1,2% p=0,04</td>
</tr>
<tr>
<td>RD Heparin Arthroplasty Group, 1994, dreiarmige RCT ↔ [596]</td>
<td>Elektiver Hüft- oder Kniegelenkersatz (TEP), n=969</td>
<td>Warfarin p.o. nach INR (1,5-3) alle 24h</td>
<td>NMH (RD Heparin) 50 aXaU/kg s.c. 12h // 90 aXaU/kg s.c. alle 24h</td>
<td>TVT-Ratesono. o. plethys. 27% vs. 16% vs. 21% p&lt;0,001 // n.s., Blutg. 5,2% vs. 5,1% vs. 6,6% n.s.</td>
</tr>
<tr>
<td>Hamulyak et al., 1995, RCT ++ [597]</td>
<td>Knie- oder Hüftgelenkersatz, n=672</td>
<td>Kumarin p.o. nach INR (2-3) + MTPS</td>
<td>NMH (Nadroparin) gewichtsadaptiert s.c. alle 24h + MTPS</td>
<td>TVT-Rathemphleb. 20% vs. 17% n.s., Blutg.maj. 2,3% vs. 1,5%</td>
</tr>
</tbody>
</table>

### Evidenztable 37: Hüft- und Kniegelenkendoprothetik gemischt: Medikamentöse Prophylaxe mit Kumarinen vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Francis et al., 1983, RCT ++ [598]</td>
<td>Hüft- oder Kniegelenkersatz (TEP), n=100</td>
<td>Warfarin p.o. nach INR (1,5-3) alle 24h</td>
<td>Dextran 40 7 ml/kg KG tägl.</td>
<td>TVT-Ratethep. 21% vs. 51% p&lt;0,01, Blutg 4% vs. 3% n.s.</td>
</tr>
</tbody>
</table>

### Evidenztable 38: Hüft- und Kniegelenkendoprothetik gemischt: Kurze vs. fortgeführte medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heit et al., 2000, RCT +++ [599]</td>
<td>Hüft- oder Kniegelenkersatz (TEP), n=1195</td>
<td>NMH (Ardeparin) gewichtsadaptiert (50 aXaU/kg) s.c. alle 12h für 4-10d, dann Ardeparin 100 aXaU/kg s.c. alle 24h bis 6.Wo. po.</td>
<td>NMH (Ardeparin) gewichtsadaptiert (50 aXaU/kg) s.c. alle 12h für 4-10d, dann Placebo s.c. alle 24h bis 6.Wo. po.</td>
<td>VTE-Rateklin.+duplex/pleth. 1,5% vs. 2,0% n.s., Blutg.maj 0,3% vs. 0,5% n.s.</td>
</tr>
</tbody>
</table>
Comp et al., 2001, RCT +++ [330]
Elektiver Hüft- oder Kniegelenkersatz (TEP), n=873
NMH (Enoxaparin) 30mg s.c. alle 12h für 7-10d, dann Enoxaparin 40mg s.c. alle 24h für 3 Wo.
NMH (Enoxaparin) 30mg s.c. alle 12h für 7-10d, dann Placebo s.c. alle 24h für 3 Wo.
VTE-Ratephleb. 8,0% vs. 23,2% p<0,001, Blutg.major 0% vs. 0,2% n.s.

4.1.6.4 Arthroskopische Eingriffe an der unteren Extremität

Evidenztabelle 39: Kniegelenkarthroskopie: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michot et al. 2002, RCT ++- [600]</td>
<td>Kniearthroskopie, n=218</td>
<td>NMH (Dalteparin) gewichtsadaptiert s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratekompress. 1,5% vs. 15,6% p=0,004, Blutg.major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Wirth et al., 2001, RCT --- [601]</td>
<td>Kniearthroskopie, n=262</td>
<td>NMH (Reviparin 1750 IU s.c. alle 24h)</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratekompress 0,9% vs. 4,1% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Roth, 1995, RCT --- [602]</td>
<td>Ambul. arthroskopische Meniskuschirurgie, n=122</td>
<td>NMH (Nadroparin) 7500 aXaU s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rateduplex. 1,6% vs. 8,2% k.A.z.Sign., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

5 Die aXa-Aktivität wurde hier nach der (heute überholten) Messmethodik des Choay-Instituts angegeben.

Evidenztabelle 40: Arthroskopische Eingriffe: Kurze vs. fortgeführte medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marlovits et al., 2007, RCT -+- [603]</td>
<td>Arthroskopische Kreuzbandsatzplastik, n=159</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h für 3-8d und dann 20d</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h für 3-8d, dann Placebo s.c. alle 24 für 20d</td>
<td>TVT-Ratephleb. +phleb. k.A. 2,8% vs. 41,2% k.A.z.Sign., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

4.1.6.5 Immobilisation an der unteren Extremität

Evidenztabelle 41: Immobilisierung des Unterschenkels nach Verletzung: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kujath et al.; 1993, RCT →+ [320; 604; 605]</td>
<td>Ruhigstellung nach Fraktur des Beines, n=253</td>
<td>NMH (Nadroparin) 36mg s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratekompress. 4,8% vs. 16,5% p&lt;0,01, Blutg. k.A.</td>
</tr>
<tr>
<td>Kock et al. 1995, RCT →+ [322; 606-608]</td>
<td>Ruhigstellung nach Fraktur des Beines, n=339</td>
<td>NMH (Certoparin) 3000 aXaU s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Ratephleb. 6,3% vs. 4,8% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Gehling et al., 1998, RCT --- [609]</td>
<td>Ruhigstellung nach Fraktur oder Sehnenverletzung, n=287</td>
<td>NMH (Reviparin 1750 aXaU) s.c. alle 24h</td>
<td>Aspirin 500mg p.o. alle 12h</td>
<td>TVT-Rateduplex. 6,3% vs. 4,8% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>
Evidenztabelle 42: Immobilisierung des Unterschenkels nach Verletzung: Kurze vs. fortgeführte medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lapidus et al., 2007, RCT +++ [610]</td>
<td>Ruhigstellung des Beines wegen Achillessehnenruptur, n=101</td>
<td>NMH (Dalteparin 5000 IU s.c. alle 24h)</td>
<td>Placebo</td>
<td>TVT-Rate duplex. 34% vs. 36% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

4.1.7 Eingriffe und Verletzungen an der Wirbelsäule, Polytrauma, Verbrennungen

4.1.7.1 Eingriffe an der Wirbelsäule

Evidenztabelle 43: Eingriffe an der Wirbelsäule: Physikalische Maßnahmen vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skillman et al., 1978, RCT +++. [233]</td>
<td>Neurochir. OP, (53% WS, 47% Kraniotomie), n=95</td>
<td>IPK</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate + phleb. 8,5% vs. 25% p&lt;0,05, Blutg. k.A.</td>
</tr>
</tbody>
</table>

Evidenztabelle 44: Eingriffe an der Wirbelsäule: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voth et al., 1992, RCT +++. [349]</td>
<td>Lumbarne Bandscheiben-OP, n=179</td>
<td>NMH (Certoparin 1500 aPTT-U + DHE 0,5mg s.c. alle 24h)</td>
<td>UFH 5000 IU s.c. + DHE 0,5mg alle 12h</td>
<td>TVT-Rateklin.+phleb./Doppler 1,1% vs. 2,1% k.A.z.Sign., Blutg.major 0% vs. 4,3% k.A.z.Sign.</td>
</tr>
</tbody>
</table>

Evidenztabelle 45: Eingriffe an der Wirbelsäule: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jorgensen et al., 2002, RCT ++ [318]</td>
<td>Ruhigstellung nach Fraktur des Beines oder Achillessehnenruptur, n=300</td>
<td>NMH (Tinzaparin 3500 IU s.c. alle 24h)</td>
<td>Keine Therapie</td>
<td>TVT-Ratephleb. 10% vs. 17%, p=0,15, Blutg.major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Lassen et al., 2002, RCT +++ [319]</td>
<td>Ruhigstellung nach Fraktur des Beines oder Achillessehnenruptur, n=440</td>
<td>NMH (Reviparin 1750 IU s.c. alle 24h)</td>
<td>Placebo</td>
<td>TVT-Ratephleb. 9% vs 19% p=0,01, Blutg.major 0,9% vs. 0,4% n.s.</td>
</tr>
<tr>
<td>Lapidus et al., 2007, RCT +++ [610]</td>
<td>Ruhigstellung des Beines wegen Achillessehnenruptur, n=101</td>
<td>NMH (Dalteparin 5000 IU s.c. alle 24h)</td>
<td>Placebo</td>
<td>TVT-Rateduplex. 34% vs. 36% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Autor, Jahr, Design</td>
<td>Patientenkollektiv</td>
<td>Interventionsgruppe</td>
<td>Kontrollgruppe</td>
<td>Ergebnisse</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Prestar, 1992, RCT ++ [348]</td>
<td>Lumbarne Bandscheiben-OP (mikroneuro-chir.), n=200</td>
<td>NMH (Certoparin) 1500 aPTT-U alle 24h + MTPS</td>
<td>UFH 5000 IU alle 8h + MTPS</td>
<td>LE-Rateklin.+perf.szint. 0% vs. 2% k.A.z.Sign., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

**Evidenztabelle 46: Eingriffe an der Wirbelsäule: Sonstige Vergleiche**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rokito et al., 1996, dreiarmlige RCT -++ [347]</td>
<td>Mehrsegmentale posteriore oder anteriore WS-Stabilisierungen, n=110</td>
<td>MTPS + IPK // MTPS + Kumarin nach Prothrombinzeit (1,3-1,5)</td>
<td>MTPS</td>
<td>TVT-Ratesono+phleb. 0% vs. 0% vs. 0%, n.s., Blutg.major 0% vs. 0% vs. 5,7%</td>
</tr>
<tr>
<td>Wood et al., 1997, RCT ++ [612]</td>
<td>Mehrsegmentale posteriore oder anteriore WS-Stabilisierungen, n=136</td>
<td>MTPS + IPK (Oberschenkel)</td>
<td>MTPS + IPK (Fuß)</td>
<td>TVT-Ratesono+phleb. 0% vs. 2,4% k.A.z.Sign., Blutg. k.A.</td>
</tr>
</tbody>
</table>

**4.1.7.2 Verletzungen an der Wirbelsäule**

**Evidenztabelle 47: Verletzungen der Wirbelsäule: Stellenwert physikalischer Maßnahmen**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merli et al., 1988, dreiarmlige RCT -++ [613]</td>
<td>Rückenmarkverletzungen (C2-Th11), n=48</td>
<td>Elektrische Stimulation + UFH 5000 IU s.c. alle 8h</td>
<td>UFH 5000 IU s.c. alle 8h // Placebo s.c. alle 8h</td>
<td>TVT-RateFUT 6,7% vs. 50% und 47% p&lt;0,05, Blutg. k.A.</td>
</tr>
<tr>
<td>SCITI Studiengruppe, 2003, RCT ++ [350]</td>
<td>Rückenmarkverletzungen, n=107</td>
<td>IPK + UFH 5000 IU s.c. alle 8h</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>VTE-Rateplethys.+phleb. 63,3% vs. 65,5% n.s., Blutg.major 5,3% vs. 2,6% n.s.</td>
</tr>
</tbody>
</table>

**Evidenztabelle 48: Verletzungen der Wirbelsäule: Heparine vs. keine Prophylaxe**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frisbie und Sasa-</td>
<td>Rückenmarkverlet-</td>
<td>UFH 5000 IU s.c.</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rateplethys.+phleb. 6,6% vs. 5,8% k.A.z.Sign., Blutg. k.A.</td>
</tr>
<tr>
<td>(C2-Th11), n=32</td>
<td>zungen, n=32</td>
<td>alle 12h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Evidenztabelle 49: Verletzungen der Wirbelsäule: NMH vs. UFH**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green et al, 1990, RCT ++ [615]</td>
<td>Rückenmarkverletzungen, n=41</td>
<td>NMH 3500 aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Rateduplex. 0% vs. 23,8% p=0,02, Blutg.major 0% vs. 7,9% k.A.z.Sign.</td>
</tr>
<tr>
<td>Lohmann et al., 2001, RCT ++ [616]</td>
<td>WS-Verletzungen mit Querschnittsyndromen, n=166</td>
<td>NMH (Dalteparin) 5000 aXaU s.c. alle 24h</td>
<td>UFH 7500 IU s.c. alle 12h</td>
<td>TVT-Rateklin.+phleb. 7,5% vs. 14,0% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>
### 4.1.7.3 Polytrauma

#### Evidenztabelle 50: Polytrauma: Stellenwert physikalischer Maßnahmen

(Die Studie von Greenfield et al. [127] wurde aufgrund schwerer methodischer Schwächen nicht berücksichtigt.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuchs et al., 2005, RCT ++-[617]</td>
<td>Traumata untere Extremität, n=227</td>
<td>Arthroflow device + UFH 5000 IU s.c. alle 8h + KG</td>
<td>UFH 5000 IU s.c. alle 8h + KG</td>
<td>TVT-Rateplethys/kompress/doppler. 3,6% vs. 25% p&lt;0,001, Blutg. k.A.</td>
</tr>
<tr>
<td>Stannard et al. 2001, RCT ++-[363]</td>
<td>Becken-/Azetabulumfraktur, n=107</td>
<td>Thigh-calf low-pressure sequential compression device</td>
<td>Calf-foot high-pressure pulsatile compression pump</td>
<td>TVT-Rateduplex/MRT. 19% vs. 9%, n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Velmahos et al., 2005, RCT +--[618]</td>
<td>Polytrauma-Patienten (mittlerer ISS= 20), n= 60</td>
<td>Elektrische Muskelstimulation bei der Beine (bis medik. VTE-Prophylaxe möglich)</td>
<td>Keine Therapie (bis medik. VTE-Prophylaxe möglich)</td>
<td>TVT-Ratepleth/duplex. 27% vs. 29% n.s., zu Blutg. k.A.</td>
</tr>
</tbody>
</table>

#### Evidenztabelle 51: Poly-/Neurotrauma: Physikalische Maßnahmen vs. medikamentöse Prophylaxe

(Die Studie von Dennis et al. [619] erwies sich als nicht-randomisiert, auch wenn die Autoren selbst eine Randomisation angeben.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knudson et al., 1992, RCT ---[354]</td>
<td>Polytrauma-Patienten (mittlerer ISS= 17), n= 113</td>
<td>UFH (5000 IU s.c. alle 12h) nach Aufnahme</td>
<td>IPK und MTPS</td>
<td>TVT/LE-Rateduplex. 8% vs. 12% n.s., Blutg. 8% vs. 12% n.s.</td>
</tr>
<tr>
<td>Knudson et al., 1996, RCT --- [620]</td>
<td>Polytrauma-Patienten (mittlerer ISS= 15), n= 372</td>
<td>NMH (Enoxaparin s.c. alle 12h, k.A. zur Dosis)</td>
<td>IPK oder AVI, je nach Verletzungs muster</td>
<td>TVT/LE-Rateduplex. 1% vs. 2% n.s., Blutg. 1% vs. 0% n.s.</td>
</tr>
<tr>
<td>Kurtoglu et al., 2004, pRCT ++[241]</td>
<td>Kopftrauma (90% intrakranielles Hämatom, 10% WS, mittlerer ISS= 19), n=120</td>
<td>IPK</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>VTE-Rateklin./duplex 6,6% vs. 5,0% n.s., Blutg.major 1,8% vs. 1,6% n.s.</td>
</tr>
</tbody>
</table>

#### Evidenztabelle 52: Polytrauma: Heparine vs. keine Prophylaxe oder physikalische Maßnahmen

(Die Studie von Greenfield [127] wurde aufgrund schwerer methodischer Schwächen nicht berücksichtigt.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knudson et al., 1994, RCT --- [353]</td>
<td>Polytrauma-Patienten, n= 108</td>
<td>UFH (5000 IU s.c. alle 12h) nach Aufnahme</td>
<td>Keine Prophylaxe</td>
<td>TVT/LE-Rateduplex 2% vs. 3% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Knudson et al., 1994, RCT --- [353]</td>
<td>Polytrauma-Patienten, n= 46</td>
<td>UFH (5000 IU s.c. alle 12h) nach Aufnahme</td>
<td>Keine Prophylaxe</td>
<td>TVT/LE-Rateduplex. 5% vs. 7% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Ginzburg et al., 2003, RCT +++ [621]</td>
<td>Polytrauma-Patienten, n= 442</td>
<td>NMH (Enoxaparin) 30mg s.c. alle 12h</td>
<td>IPK</td>
<td>TVT/LE-Rateduplex. 0,5% vs. 2,7% n.s., Blutg. % vs. 0% n.s.</td>
</tr>
</tbody>
</table>

*In dieser Publikation werden zwei Studien berichtet.*
### Evidenztabelle 53: Polytrauma: UFH vs. NMH, sowie Beginn der Gabe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geerts et al., 1996, RCT+++ [325]</td>
<td>Polytrauma-Patienten (mittlerer ISS= 23), n= 344</td>
<td>NMH (Enoxaparin 3000 IU s.c. alle 12h) beginnend 36h nach Trauma</td>
<td>UFH (5000 IU s.c. alle 12h) beginnend 36h nach Trauma</td>
<td>TVT-Rate, phleb. 31% vs. 44%, p=0,01, Blutg. major 3% vs. 1% n.s.</td>
</tr>
<tr>
<td>Stannard et al., 2006, RCT+ [355]</td>
<td>Polytrauma-Patienten (mittlerer ISS= 14), n= 224</td>
<td>NMH (Enoxaparin 3000 IU s.c. alle 12h) beginnend 24h nach Trauma</td>
<td>Fußpumpe, dann NMH (Enoxaparin 3000 IU s.c. alle 12h) beginnend 5d nach Trauma</td>
<td>TVT-Rate, phleb. 13% vs. 9%, n.s., Blutg. major 1% vs. 3% n.s.</td>
</tr>
</tbody>
</table>

### 4.1.7.4 Verbrennungen

Hierzu wurde keine Evidenz aus hochwertigen randomisierten Studien identifiziert.
### 4.2 Innere Medizin/Neurologie

#### 4.2.1 Akute internistische Erkrankungen

**Evidenztabelle 54: Akute internistische Erkrankungen: Physikalische Maßnahmen vs. keine Prophylaxe**

(Nicht eingeschlossen wurde die fraglich randomisierte Studie von Ibarra-Pérez et al. [622], die in einigen Meta-Analysen eingeschlossen ist.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kierkegaard und Norgren, 1993, RCT</td>
<td>Akuter Myokardinfarkt, n=160 (Beine)</td>
<td>MTTS (an einem Bein)</td>
<td>Keine Prophylaxe (am anderen Bein)</td>
<td>TVT-Rate, 0% vs. 10% ( p=0.003 ), Blutg. k.A.</td>
</tr>
</tbody>
</table>

**Evidenztabelle 55: Akute internistische Erkrankungen: Heparine vs. keine Prophylaxe**

(Die Studien von Halkin et al. [624], Lederle et al. [625] und Mahé et al. [626] fanden keine Berücksichtigung, da dort nur Mortalität betrachtet wurde. Nicht eingeschlossen wurde auch die fraglich randomisierte Studie von Ibarra-Pérez et al. [622], die in einigen Meta-Analysen eingeschlossen ist.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belch et al., 1981, RCT</td>
<td>Internist. Patienten (kardiolog, pulmolog.), n=100</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFU 4% vs. 26% ( p=0.01 ), Blutg. minor 2% vs. 0% n.s.</td>
</tr>
<tr>
<td>Cade et al., 1982, dreijährige RCT</td>
<td>Internist., z.T. intensivpflichtige Patienten, n=234</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>Placebo s.c. alle 12h</td>
<td>TVT-Rate RFU 10% vs. 19% ( p=0.05 ), Blutg. minor 36% vs. 11% ( p&lt;0.01 )</td>
</tr>
<tr>
<td>Dahan et al., 1986, RCT</td>
<td>Internist. Patienten über 65J., n=270</td>
<td>NMH (Enoxaparin) 60mg s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>TVT-Rate RFU 3% vs. 9% ( p=0.03 ), Blutg. minor 0,80% vs. 0,38% ( p&lt;0.05 )</td>
</tr>
<tr>
<td>Gardlund et al., 1996, RCT</td>
<td>Internist. Patienten (verschiedene infektöse Erkrankungen), n=11.693</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>Keine Therapie</td>
<td>LE-Rate Autopsie 0,3% vs. 0,3% n.s., Blutg. n.s.</td>
</tr>
<tr>
<td>Samama et al. (MEDENOX), 1999, dreijährige RCT</td>
<td>Internist. Patienten, n=1102</td>
<td>NMH (Enoxaparin) 20mg s.c. alle 24h // NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>VTE-Rate phasis. 15,0% vs. 5,5% vs. 14,9% ( p&lt;0.001 ), Blutg. major 0,3% vs. 1,7% vs. 1,1% n.s.</td>
</tr>
<tr>
<td>Fraisse et al., 2000, RCT</td>
<td>Dekompensierte COPD, n=223</td>
<td>NMH (Nadroparin gewichtsadaptiert s.c. alle 24h)</td>
<td>Placebo s.c. alle 24h</td>
<td>TVT-Rate phasis. 15,5% vs. 28,2% ( p=0,045 ), Blutg. major 5,5% vs. 2,6% n.s.</td>
</tr>
<tr>
<td>Leizorovicz et al., 2004, RCT</td>
<td>Internist. Patienten, n=3706</td>
<td>NMH (Dalteparin) 5000 IU s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>TVT/LE-Rate compress. 2,77% vs. 4,96% ( p=0,0015 ), Blutg. major 0,49% vs. 0,16% n.s.</td>
</tr>
</tbody>
</table>
Evidenztabelle 56: Akute internistische Erkrankungen: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poniewierski et al., 1988, RCT ++ [632]</td>
<td>Internist. Patienten, n=200</td>
<td>NMH (Dalteparin) 2500 IU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Rate therm. + phleb 0% vs. 0% n.s., Blutg. major 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Harenberg et al., 1990, RCT ++ [633]</td>
<td>Internist. Patienten (bettlägerig), n=166</td>
<td>NMH (Certoparin) 1500 aPTTU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Rate doppler + phleb, 3,6% vs. 4,5% k.A:Z.Sign., Blutg. minor 24% vs. 57% p&lt;0,001</td>
</tr>
<tr>
<td>Bergmann et al., 1996, RCT +++ [634]</td>
<td>Internist. Patienten (bettlägerig), n=442</td>
<td>NMH (Enoxaparin) 20mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>VTE-Rate RFUT 4,8% vs. 4,6% n.s. Blutg. major 0,45% vs. 0,90% n.s.</td>
</tr>
<tr>
<td>Harenberg et al., 1996, RCT ++ [128; 635]</td>
<td>Internist. Patienten (bettlägerig), n=1968</td>
<td>NMH (Nadroparin) 36mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVE-Rate kompress-phleb, 0,5% vs. 0,7% n.s., Blutg. major 0,6% vs. 0,5% n.s.</td>
</tr>
<tr>
<td>Lechner et al., 1996, RCT ++ [636]</td>
<td>Internist. Patienten (bettlägerig), n=959</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Rate duplex + phleb, 0,2% vs. 1,4% n.s., Blutg. major 0,4% vs. 1,5% n.s.</td>
</tr>
<tr>
<td>Kleber et al., 2003, RCT ++ [637]</td>
<td>Internist. Patienten (Lunge, Herz), n=665</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>VTE-Rate phleb, 8,4% vs. 10,4% n.s., Blutg. major 0,3% vs. 0,3% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 57: Akute internistische Erkrankungen: Fondaparinux vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen et al. (ARTEMIS), 2006, RCT +++ [377]</td>
<td>Internist. Patienten, n=849</td>
<td>Fondaparinux 2,5mg s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>VTE-Rate phleb, 5,6% vs. 10,5%, p=0,029, Blutg. major 0,2% vs. 0,2% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 58: Akute internistische Erkrankungen: Kurze vs. fortgeführte medikamentöse Prophylaxe

(Die EXCLAIM-Studie wurde hier noch nicht berücksichtigt, da bislang lediglich die Studienmethodik [638] publiziert wurde, die Ergebnisse jedoch nur in mündlicher Form präsentiert wurden [639].)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luba et al., 2007, RCT ++ [640]</td>
<td>Internist. Patienten (bettlägerig), n=300</td>
<td>NMH (Nadroparin) gewichtsadaptiert solange Pat. bettlägerig (5d), dann weitere 10d</td>
<td>NMH (Nadroparin) gewichtsadaptiert solange Pat. bettlägerig (5d)</td>
<td>TVT-Rate kompr. 3% vs. 8%, n.s., Blutg. major 0% vs. 0%, n.s.</td>
</tr>
</tbody>
</table>
4.2.2 Maligne Erkrankungen (nicht-operative Therapie)

Evidenztabelle 59: Maligne Erkrankungen: Medikamentöse vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levine et al., 1994, RCT ++ [641]</td>
<td>Patientinnen mit Mamma-Ca. und Chemotherapie, n=311</td>
<td>Warfarin 1mg für 6 Wo., dann ggf. Dosisanpassung auf INR 1,3 bis 1,9</td>
<td>Placebo s.c. alle 24h</td>
<td>VTE-Rate kin.+duplex+phleb. 0,7% vs. 4,4% p=0,03, Blutg.minor 5,3% vs. 3,1% n.s.</td>
</tr>
</tbody>
</table>

4.2.3 Schlaganfall

Evidenztabelle 60: Schlaganfall: Physikalische vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muir et al., 2000, RCT ← [642]</td>
<td>Schlaganfall, n=98</td>
<td>MTPS</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate duplex 10,8% vs. 21,9% n.s., Blutg. k.A.</td>
</tr>
</tbody>
</table>

Evidenztabelle 61: Schlaganfall: Physikalische vs. medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pambianco et al., 1995, vierarmige RCT +-- [643]</td>
<td>Rehabilitation nach akutem Schlaganfall, n=360</td>
<td>IPK</td>
<td>UFH 5000 IU s.c. alle 8h (PTT 30-39,9sek.) // keine Prophylaxe</td>
<td>TVT-Rate duplex 9,4% vs. 6,0% vs. 6,9% n.s., Blutg. k.A.</td>
</tr>
</tbody>
</table>

7 Der vierte Arm der Studie (Elektrostimulation) wurde nach Einschluss von nur 8 Patienten wegen mangelhafter Compliance abgebrochen.

Evidenztabelle 62: Schlaganfall: Heparine vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>McCarthy et al., 1986, RCT ←+ [644]</td>
<td>Schlaganfall, n=305</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFUT 22,2% vs. 72,2% p&lt;0,001, Blutg. k.A.</td>
</tr>
<tr>
<td>Prins et al, 1989, RCT ++ [645]</td>
<td>Schlaganfall, n=60</td>
<td>NMH (Kabi 2165) 2500 aXaU s.c. alle 12h</td>
<td>Placebo s.c. alle 12h</td>
<td>TVT-Rate RFUT 22% vs. 50% p=0,05, Blutg.major 13,2% vs. 6,6% n.s.</td>
</tr>
<tr>
<td>Elias et al, 1990, RCT ← [646]</td>
<td>Hemiplegie nach Schlaganfall, n=30</td>
<td>NMH (CY 222) 15000 aXaU s.c. alle 24h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate RFUT 0% vs. 3,6 % k.A.z.Sign., Blutg. k.A.</td>
</tr>
<tr>
<td>Sandset et al., 1990, RCT ++ [647]</td>
<td>Akuter Schlaganfall, n=103</td>
<td>NMH (Kabi 2165) gewichtsadaptiert s.c. alle 24h</td>
<td>Placebo s.c. alle 24h</td>
<td>TVT-Rate phleg. 36% vs. 34% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>
Evidenztabelle 63: Schlaganfall: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hillbom et al., 2002, RCT +++ [402]</td>
<td>Akuter Schlaganfall, n=212</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Rateplex 16,0% vs. 24,5% n.s., Blutg$_{\text{major}}$ 0,9% vs. 0% k.A.Z.Sign.</td>
</tr>
<tr>
<td>Diener et al. (PROTECT), 2006, RCT +++ [400]</td>
<td>Akuter Schlaganfall, n=545</td>
<td>NMH (Cenaporin) 3000aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>VTE-Rate$<em>{\text{duplex}}$ 6,6% vs. 8,8% p=0,008*, Blutg$</em>{\text{major}}$ 1,1% vs. 1,8% k.A.Z.Sign.</td>
</tr>
<tr>
<td>Sherman et al. (PREVAIL), 2007, RCT ++ [401]</td>
<td>Akuter Schlaganfall, n=1762</td>
<td>NMH (Enoxaparin) 40mg s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>VTE-Rate$<em>{\text{duplex+phleb.}}$ 10,2% vs. 18,1% p=0,001, Blutg$</em>{\text{major}}$ 1,3% vs. 0,7%, n.s.</td>
</tr>
</tbody>
</table>

* Die Signifikanztestung erfolgte hier auf Nichtunterlegenheit (bei einer Äquivalenzschranke von 5%).

Evidenztabelle 64: Schlaganfall: Danaparoid vs. andere oder keine medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turpie et al., 1987, RCT -++ [648]</td>
<td>Akuter Schlaganfall, n=85</td>
<td>ORG 10172 (Orgaran) 1000 IU i.v., dann 750 IU s.c. alle 12h</td>
<td>Placebo i.v., dann s.c. alle 12h</td>
<td>TVT-Rate$<em>{\text{RFUT}}$ 4% vs. 28% p=0,005, Blutg$</em>{\text{major}}$ 2% vs. 0% n.s.</td>
</tr>
<tr>
<td>Turpie et al., 1992, RCT -++ [649]</td>
<td>Akuter Schlaganfall, n=87</td>
<td>ORG 10172 (Orgaran) 750 aXaU s.c. alle 12h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Rate$<em>{\text{RFUT}}$ 8,9% vs. 31,0% p=0,014, Blutg$</em>{\text{major}}$ 2,2% vs. 0% k.A.Z.Sign.</td>
</tr>
<tr>
<td>Dumas et al., 1994, RCT -++ [650]</td>
<td>Akuter Schlaganfall, n=179</td>
<td>ORG 10172 (Orgaran) 1250 aXaU s.c. alle 24h</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Rate$<em>{\text{RFUT}}$ 14,6% vs. 19,8% n.s., Blutg$</em>{\text{major}}$ 1,1% vs. 1,1% n.s.</td>
</tr>
</tbody>
</table>

Evidenztabelle 65: Schlaganfall oder Lähmung: Warfarin vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginsberg et al., 2002, RCT +++ [651]</td>
<td>Rehabilitation nach akutem Schlaganfall, n=103</td>
<td>Warfarin 2mg p.o. alle 24h (INR $&lt;$2,0)</td>
<td>Placebo p.o. alle 24h</td>
<td>TVT-Rate$<em>{\text{duplex+phleb.}}$ 7,7% vs. 20,0% n.s., Blutg$</em>{\text{major}}$ 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

4.3 Intensivmedizin

Evidenztabelle 66: Intensivmedizin: Medikamentöse Maßnahmen vs. keine Prophylaxe

(Die Studie von Levi et al. [652] wurde nicht berücksichtigt, weil die Studie nicht primär dafür angelegt worden war, TVT-Raten zu vergleichen.)

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus et al., 1973, RCT +++ [653]</td>
<td>Intensivpflichtige kardiolog. Patienten, n=78</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Keine Prophylaxe</td>
<td>TVT-Rate$_{\text{RFUT}}$ 3% vs. 23% p= 0,05, Blutg. 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>
### 4.4 Geburtshilfe und Gynäkologie

Evidenztabelle 67: Gynäkologische Eingriffe: Physikalische Maßnahmen vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-gruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cade, 1982, RCT+++ [628]</td>
<td>Intensivpflichtige Patienten (operativ und nicht-operativ), n=119</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>Placebo s.c. alle 12h</td>
<td>TVT- RateRFUT 13% vs. 29% n.s., Blutg. k.A.</td>
</tr>
</tbody>
</table>

Evidenztabelle 68: Gynäkologische Eingriffe: Physikalische Maßnahmen vs. medikamentöse Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-gruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarke-Pearson et al., 1984, RCT-- [654]</td>
<td>Onkologische OP, n=194</td>
<td>IPK bis zum 5. Tag</td>
<td>Keine Prophylaxe</td>
<td>VTE- RateRFUT 12,4% vs. 18,6% n.s., Blutg. k.A.</td>
</tr>
<tr>
<td>Turner et al., 1984, RCT++ [655]</td>
<td>Große benigne gyn. OP, n=196</td>
<td>MTPS</td>
<td>Keine Prophylaxe</td>
<td>TVT- RateRFUT 0% vs. 4,2% p=0,048, Blutg. k.A.</td>
</tr>
</tbody>
</table>

Evidenztabelle 69: Gynäkologische Eingriffe: Medikamentöse Prophylaxe vs. keine zusätzliche geeignete Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventions-gruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>[291]Clarke-Pearson et al., 1993, RCT ++</td>
<td>Onkologische OP, n=208</td>
<td>IPK bis zum 5. Tag</td>
<td>UFH 5000 IU s.c.</td>
<td>TVT- RateRFUT 4% vs.</td>
</tr>
<tr>
<td>Maxwell et al., 2001, RCT ++ [292]</td>
<td>Onkologische OP, n=211</td>
<td>IPK bis zum 5. Tag</td>
<td>NMH (Dalteparin) 5000 IU alle 24h bis zum 5. Tag</td>
<td>TVT-RatetRUR 0,9% vs. 1,9% k.A., Sign., Blutgmajor 32,0% vs. 31,4% n.s.</td>
</tr>
</tbody>
</table>

Weitere Quellen:
- Welti 1981, RCT++, [657]
- Kajanoja und Forss, 1981 --, [656]
### Evidenztabelle 70: Gynäkologische Eingriffe: NMH vs. UFH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borstad et al., 1988, RCT -+- [659]</td>
<td>Große gynäkologische OP, n=215</td>
<td>NMH (Dalteparin 5000 aXaU s.c. alle 24h)</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>TVT-Ratepleth.+phleb. 0% vs. 0% n.s., Blutg.minor 58% vs. 50% n.s.</td>
</tr>
<tr>
<td>Briel et al., 1988, RCT --- [660]</td>
<td>Hysterektomie, n=200</td>
<td>NMH (Dalteparin 5000 aXaU s.c. alle 24h)</td>
<td>UFH-DHE 5000 IU s.c. alle 12h</td>
<td>TVT-Ratetherm.+phleb. 1% vs. 1% n.s., Blutg.minor 4,1% vs. 2,8% k.A.Z.Sign.</td>
</tr>
<tr>
<td>Fricker et al., 1988, RCT --- [661]</td>
<td>Onkologische OP (75% gynäkologisch), n=80</td>
<td>NMH (Dalteparin 5000 aXaU s.c. alle 24h)</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>VTE-Ratepleth. 0% vs. 5% n.s., Blutg.minor 0,5% vs. 27,5% p=0,006</td>
</tr>
<tr>
<td>Steiner et al., 1989, RCT --- [662]</td>
<td>Große gynäkologische OP, n=191</td>
<td>NMH (Certoparin 1500 IU + DHE 0,5 mg s.c. alle 24h)</td>
<td>UFH 1500 IU s.c. alle 24h</td>
<td>VTE-Rateplex 2% vs. 1% n.s., Blutg.minor 23% vs. 10% p&lt;0,02</td>
</tr>
<tr>
<td>Heilmann et al., 1989, RCT ++- [663]</td>
<td>Große gynäkologische OP, n=300</td>
<td>NMH (Certoparin 1500 aPTT-U s.c. alle 24h + MKS + KG)</td>
<td>UFH 5000 IU s.c. alle 8h + MKS + KG</td>
<td>TVT-Rateplethysm.+phleb. 1,3% vs. 4,0% n.s., Blutg.major 7,3% vs. 8,0% n.s.</td>
</tr>
<tr>
<td>Borstad et al., 1992, RCT -+- [664]</td>
<td>Große gynäkologische OP, n=141</td>
<td>NMH (Dalteparin 2500 aXaU s.c. alle 24h)</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>VTE-Rateplex 0% vs. 0% n.s., Blutg.major 20% vs. 14% p=0,02</td>
</tr>
<tr>
<td>Ward und Pradhan, 1998, RCT +-+ [665]</td>
<td>Große gyn. OP, n=566</td>
<td>NMH (Dalteparin 5000 IU s.c. alle 24h)</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>VTE-Rateplex 3% vs. 0% n.s., Blutg. 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Baykal et al., 2001, RCT-+++ [666]</td>
<td>Onkologische OP, n=102</td>
<td>NMH (Enoxaparin 2500 IU s.c. alle 24h)</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>TVT-Rateplex 0% vs. 0% n.s., Blutg.major 0% vs. 0% n.s.</td>
</tr>
</tbody>
</table>

### Evidenztabelle 71: Entbindung per Kaiserschnitt: Medikamentöse Prophylaxe vs. keine Prophylaxe

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hill et al., 1988, RCT +++ [667]</td>
<td>Sectio caesarea, n= 50</td>
<td>UFH (5000 IU, alle 12 h über 5 Tage)</td>
<td>Placebo</td>
<td>VTE-Rate k.A., Blutg. 12% vs. 12% n.s.</td>
</tr>
<tr>
<td>Heilmann et al., 1991, RCT --+ [668]</td>
<td>Sectio caesarea, n= 207</td>
<td>UFH (5000 IU , alle 8h über 7 Tage)</td>
<td>Hydroxyäthylstärke 6% 500ml i.v. präop., dann 2 x 500 ml po.</td>
<td>TVT-Rateplethysm.+phleb. 7,8% vs. 5,9% n.s., Blutg. 4,9% vs. 1,9% n.s.</td>
</tr>
<tr>
<td>Burrows et al., 2001, RCT +++ [669]</td>
<td>Sectio caesarea, n= 67</td>
<td>NMH (Dalteparin 2500 IU s.c. alle 24h)</td>
<td>Placebo</td>
<td>TVT-Rateplex 3% vs. 0% n.s., Blutg. 0% vs. 0% n.s.</td>
</tr>
<tr>
<td>Gates et al., 2004, RCT+++ [670]</td>
<td>Sectio caesarea, n= 141</td>
<td>NMH (Enoxaparin 4000 IU s.c. alle 24h)</td>
<td>Placebo</td>
<td>VTE-Rateplex 2% vs. 0% n.s., Blutg. 9% vs. 1%</td>
</tr>
</tbody>
</table>
4.5 Pädiatrie und Neonatologie
Hierzu wurden keine randomisiert kontrollierten Studien identifiziert.

4.6 Urologie

**Evidenztabelle 72: Urologische Eingriffe: Physikalische Maßnahmen vs. medikamentöse Prophylaxe**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coe et al., 1978, dreiarmige RCT [671]</td>
<td>Offene urologische OP, n=83</td>
<td>IPK</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>VTE-Rate RFUT 7% vs. 21% p&lt;0,04, Blutg. major 31% vs. 50% k.A.Z. Sign.</td>
</tr>
<tr>
<td>Hansberry et al., 1991, dreiarmige RCT [672]</td>
<td>Offene urologische OP, n=74</td>
<td>IPK // MTPS</td>
<td>UFH-DHE 5000 IU s.c. alle 12h</td>
<td>VTE-Rate RFUT + b. 12,5% vs. 20% vs. 8% n.s., Blutg. major n.s.</td>
</tr>
<tr>
<td>Chandhoke et al., 1992, RCT [673]</td>
<td>Offene urologische OP, n=100</td>
<td>IPK</td>
<td>Warfarin p.o. nach Prothrombinzeit (1,5fach der Norm)</td>
<td>VTE-Rate kompress 4% vs. 0% n.s., Blutg. major 0% vs. 2% n.s.</td>
</tr>
</tbody>
</table>

* Aufgrund des dreiarmigen Designs (IPK, UFH, Kontrolle) wird diese Studie in dieser und der folgenden Tabelle aufgeführt.

**Evidenztabelle 73: Urologische Eingriffe: Heparine vs. keine zusätzliche geeignete medikamentöse Prophylaxe**

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kutnowski et al., 1977, RCT [674]</td>
<td>Große urolog. OP (offene Prostatektomie), n=47</td>
<td>UFH 5000 IU s.c. alle 8h</td>
<td>Placebo s.c. alle 8h</td>
<td>VTE-Rate RFUT 9% vs. 36% p&lt;0,05, Blutg. minor 9% vs. 12% n.s.</td>
</tr>
<tr>
<td>Coe et al., 1978, dreiarmige RCT [671]</td>
<td>Offene urologische OP, n=83</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>Keine Prophylaxe</td>
<td>VTE-Rate RFUT 21% vs. 25% n.s., Blutg. major 50% vs. 25% k.A.Z. Sign.</td>
</tr>
<tr>
<td>Bergqvist und Hallböök, 1980, Subgruppe RCT [675]</td>
<td>Urolog. OP, n=59</td>
<td>UFH 5000 IU s.c. alle 12h</td>
<td>Keine Prophylaxe</td>
<td>VTE-Rate RFUT 17% vs. 32% p=0,047, Blutg. k.A.Z. Sign. der Subgruppe</td>
</tr>
<tr>
<td>Vandendris et al., 1980, RCT [676]</td>
<td>Offene Prostatektomie, n=64</td>
<td>UFH 5000 IU s.c. 2h präop., dann alle 12h</td>
<td>Placebo s.c. 2h präop., dann alle 12h</td>
<td>VTE-Rate RFUT 10% vs. 39% p&lt;0,01, Blutg. minor 13% vs. 9% n.s.</td>
</tr>
<tr>
<td>Bejjani et al., 1983, RCT [677]</td>
<td>Transurethrale Prostataresektion, n=34</td>
<td>UFH 5000 IU s.c. 2h präop., dann alle 12h</td>
<td>Placebo s.c. 2h präop., dann alle 12h</td>
<td>LE-Rate extrem 0% vs. 6% n.s., Blutg. major 12% vs. 6% n.s.</td>
</tr>
</tbody>
</table>
## Evidenztabelle 74: Urologische Eingriffe: Heparine und physikalische Maßnahmen vs. physikalische Maßnahmen alleine

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sebeseri et al., 1975, RCT +</td>
<td>Große OP an Niere, Ureter oder Blase, n= 65</td>
<td>UFH 5000 IU s.c. 2h präop., dann alle 12h, MTPS</td>
<td>MTPS</td>
<td>TVT-RateRFUT 12% vs. 58% p=0,001, Blutg. k.A.</td>
</tr>
<tr>
<td>Bigg und Catalona, 1992, pRCT +</td>
<td>Offene radikale Prostatektomie, n=68</td>
<td>UFH 5000 IU s.c. 2h präop., dann alle 12h + MTPS</td>
<td>Keine Therapie + MTPS</td>
<td>LE-Ratéklinik/szint. 0% vs. 11% n.s., Blutg. n.s., Studienabbruch</td>
</tr>
</tbody>
</table>
### 4.7 Evidenztabellen Addendum 2010 zu Dabigatranetexilat und Rivaroxaban bei elektivem Hüft- und Kniegelenkersatz

#### Evidenztabelle 75: Hüft- oder Kniegelenkersatz: Dabigatranetexilat vs. NMH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eriksson et al., 2007, dreiarmige RCT+++ [24]</td>
<td>Elektiver Kniegelenkersatz, n=2101</td>
<td>Dabigatran 150 bzw. 220 mg p.o. alle 24h</td>
<td>NMH (Enoxaparin 40 mg s.c. alle 24h)</td>
<td>VTE-Ratephleb. o. Tod 40,5% bzw. 36,4% vs. 37,7% p= n.s., Blutg.maj. 1,5% bzw. 1,3% vs. 1,3% n.s.</td>
</tr>
<tr>
<td>Eriksson et al., 2007, dreiarmige RCT+++ [25]</td>
<td>Elektiver Hüftgelenkersatz, n=3494</td>
<td>Dabigatran 150 bzw. 220 mg p.o. alle 24h</td>
<td>NMH (Enoxaparin 40 mg s.c. alle 24h)</td>
<td>VTE-Ratephleb. o. Tod 9% bzw. 6% vs. 7% p=n.s., Blutg.maj. 1,3% bzw. 2,0% vs. 1,6% n.s.</td>
</tr>
<tr>
<td>Ginsberg et al., 2009, dreiarmige RCT+++ [28]</td>
<td>Elektiver Kniegelenkersatz, n=2615</td>
<td>Dabigatran 150 bzw. 220 mg p.o. alle 24h</td>
<td>NMH (Enoxaparin 30 mg s.c. alle 12h)</td>
<td>VTE-Ratephleb. o. Tod 31,1% bzw. 33,7% vs. 25,3% p&lt; 0,05, Blutg.maj. 0,6% bzw. 0,6% vs. 1,4% n.s.</td>
</tr>
</tbody>
</table>

#### Evidenztabelle 76: Hüft- oder Kniegelenkersatz: Rivaroxaban vs. NMH

<table>
<thead>
<tr>
<th>Autor, Jahr, Design</th>
<th>Patientenkollektiv</th>
<th>Interventionsgruppe</th>
<th>Kontrollgruppe</th>
<th>Ergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eriksson et al., 2008, RCT+++ [23]</td>
<td>Elektiver Hüftgelenkersatz, n=4541</td>
<td>Rivaroxaban 10mg p.o. alle 24h</td>
<td>NMH (Enoxaparin 40 mg s.c. alle 24h)</td>
<td>VTE-Ratephleb. o. Tod 1,1% vs. 3,7% p&lt;0,001, Blutg. maj. 0,3% vs. 0,1% n.s.</td>
</tr>
<tr>
<td>Kakkar et al., 2008, RCT+++ [29]</td>
<td>Elektiver Hüftgelenkersatz, n=2509</td>
<td>Rivaroxaban 10mg p.o. alle 24h über 5 Wo.</td>
<td>NMH (Enoxaparin 40 mg s.c. alle 24h) über 2 Wo.</td>
<td>VTE-Ratephleb. o. Tod 2,0% vs. 9,3% p&lt;0,0001, Blutg. maj. &lt;0,1% vs. &lt;0,1% n.s.</td>
</tr>
<tr>
<td>Lassen et al., 2008, RCT+++ [30]</td>
<td>Elektiver Kniegelenkersatz n=2531</td>
<td>Rivaroxaban 10mg p.o. alle 24h</td>
<td>NMH (Enoxaparin 40 mg s.c. alle 24h)</td>
<td>VTE-Ratephleb. o. Tod 9,6% vs. 18,9% p&lt;0,001, Blutg. maj. 0,6% vs. 0,5% n.s.</td>
</tr>
<tr>
<td>Turpie et al., 2009, RCT+++ [31]</td>
<td>Elektiver Kniegelenkersatz n=3148</td>
<td>Rivaroxaban 10mg p.o. alle 24h</td>
<td>NMH (Enoxaparin 30 mg s.c. alle 12h)</td>
<td>VTE-Ratephleb. o. Tod 6,9% vs. 10,1% p=0,0118, Blutg. maj. 0,7% vs. 0,3% n.s.</td>
</tr>
</tbody>
</table>
## 4.8 Evidenztabellen Aktualisierung 2015

### Evidenztabelle 77: Kap. 3.1.2 Neurochirurgische Eingriffe

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGN / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobieraj-Teague M, Hirsh J, Yip G, Gastaldo F, Stokes T, Sloane D, et al. Randomized controlled trial of a new portable calf compression device (Venowave) for prevention of venous thrombosis in high-risk neurosurgical patients. Journal of Thrombosis and Haemostasis. 2012;10(2):229-35.</td>
<td><strong>Inclusion criteria</strong> ≥ 18 Undergoing cranial or spinal neurosurgery Patients admitted with intracranial hemorrhage (subarachnoid, intracerebral, or subdural) who had motor deficits but were not undergoing surgery</td>
<td>Venowave calf compression device, starting within 4 hours of surgery or within 24 hours of admission to hospital in non-operated patients, continued continuously until the development of symptomatic VTE; patient refusal, or venographic or ultrasound examination. + below-knee graduated compression s + early mobilization + could receive pharmacologic prophylaxis at the discretion of the neurosurgeon</td>
<td>Below-knee graduated compression s + early mobilization + could receive pharmacologic prophylaxis at the discretion of the neurosurgeon</td>
<td>DVT + symptomatic PE (9±2 days or discharge, venography or compression ultrasound) 4.0% / 18.7%; 0.008 Symptomatic DVT (9±2 days or discharge) 0 / 2; 0.50 PE (9±2 days or discharge) 0 / 0</td>
<td>High risk of bias Blinding of participants and personnel</td>
</tr>
<tr>
<td>Sobieraj-Teague M, Hirsh J, Yip G, Gastaldo F, Stokes T, Sloane D, et al. Randomized controlled trial of a new portable calf compression device (Venowave) for prevention of venous thrombosis in high-risk neurosurgical patients. Journal of Thrombosis and Haemostasis. 2012;10(2):229-35.</td>
<td><strong>Inclusion criteria</strong> ≥ 18 Undergoing cranial or spinal neurosurgery Patients admitted with intracranial hemorrhage (subarachnoid, intracerebral, or subdural) who had motor deficits but were not undergoing surgery</td>
<td>Venowave calf compression device, starting within 4 hours of surgery or within 24 hours of admission to hospital in non-operated patients, continued continuously until the development of symptomatic VTE; patient refusal, or venographic or ultrasound examination. + below-knee graduated compression s + early mobilization + could receive pharmacologic prophylaxis at the discretion of the neurosurgeon</td>
<td>Below-knee graduated compression s + early mobilization + could receive pharmacologic prophylaxis at the discretion of the neurosurgeon</td>
<td>DVT + symptomatic PE (9±2 days or discharge, venography or compression ultrasound) 4.0% / 18.7%; 0.008 Symptomatic DVT (9±2 days or discharge) 0 / 2; 0.50 PE (9±2 days or discharge) 0 / 0</td>
<td>High risk of bias Blinding of participants and personnel</td>
</tr>
</tbody>
</table>

### Evidenztabelle 78: Kap. 3.1.4.1 Allgemein- und Viszeralchirurgie („General Surgery“)

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGN / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murugesan A, Srivastava DN, Ballehaninna UK, Chamber S, Dhar A, Misra MC, et al. Detection and Prevention of Post-Operative Deep Vein</td>
<td><strong>Inclusion criteria</strong> &gt; 40 years Major abdominal operations &gt; 30 minutes</td>
<td>Nadroparin 0,3 ml, subcutaneously, started 2 hours before surgery and continued once daily for 7–9 days</td>
<td>No DVT prophylaxis</td>
<td>DVT (day 7-10, bilateral lower limb venogram) 0 / 0</td>
<td>High risk of bias Blinding of participants and personnel</td>
</tr>
</tbody>
</table>
### Thrombosis [DVT]

**Using Nadroparin Among Patients Undergoing Major Abdominal Operations in India; a Randomised Controlled Trial.**


| Study | Inclusion criteria / Exclusion criteria (main characteristic marked bold) | Intervention/s | Control | Results IGn / CG; p (primary outcome marked bold) | Risk of bias (listed are only the unclear and/or high risk items) |
|-------|-------------------------------------------------------------------------|----------------|---------|------------------------------------------------|--|----------------|
|       | History of upper gastrointestinal bleed Stroke Intracranial haemorrhage Recent history of major trauma in preceding 2 weeks Renal failure Allergy to heparin Platelet count less than 1×10⁶ / mm³ and haemoglobin less than 10 gm / dl | n = 34 (ITT) |         | DVT / PE (during treatment + 1 day, systematic venography) 1.2% / 19.4%; < 0.05 | High risk of bias Blinding of participants and personnel |
|       |                                                                         | Drop-outs n = 0 |         |                                                      | Unclear risk of bias Random sequence generation Allocation concealment Incomplete outcome data Other sources of bias (statistical analyses method) |

### Sakon M, Kobayashi T, Shimazui T.

**Efficacy and safety of enoxaparin in Japanese patients undergoing curative abdominal or pelvic cancer surgery: Results from a multicenter, randomized, open-label study.**


| Study | Inclusion criteria / Exclusion criteria (main characteristic marked bold) | Intervention/s | Control | Results IGn / CG; p (primary outcome marked bold) | Risk of bias (listed are only the unclear and/or high risk items) |
|-------|-------------------------------------------------------------------------|----------------|---------|------------------------------------------------|--|----------------|
|       | ≥ 40 years Planned, curative laparotomy for cancer of > 45 minutes Exclusion criteria Received surgery under laparoscopy or other endoscopic conditions Hypersensitivity to heparin or thrombocytopenia due to heparin Clinical signs of DVT at screening or evidence of thromboembolic disease within 1 year before surgery Had received systemic chemotherapy within 3 weeks (or radiotherapy within 15 days) before study drug initiation Childbearing potential, pregnant or lactating | Enoxaparin 20 mg, subcutaneous injection, twice daily, start 24–36 hours after surgery for 7-14 days + at least one course of postsurgical intermittent pneumatic compression 0-24 hours after surgery, the duration of intermittent pneumatic compression left to the discretion of the investigator | Intermittent pneumatic compression, duration not specified | Analysed patients n = 83 (PP, at least one study treatment + appropriate VTE imaging) | High risk of bias Blinding of participants and personnel |
|       |                                                                         | Drop-outs unclear |         | Analysed patients n = 38 (modified ITT, at least one study treatment) | Unclear risk of bias Random sequence generation Allocation concealment Incomplete outcome data Other sources of bias (statistical analyses method) |
|       |                                                                         |                 |         |                                                      | |

### Shukla PJ, Siddachari R, Ahire S, Arya S, Ramani

**DVT prophylaxis in colorectal cancer patients undergoing curative surgery: Randomized controlled trial.**


| Study | Inclusion criteria / Exclusion criteria (main characteristic marked bold) | Intervention/s | Control | Results IGn / CG; p (primary outcome marked bold) | Risk of bias (listed are only the unclear and/or high risk items) |
|-------|-------------------------------------------------------------------------|----------------|---------|------------------------------------------------|--|----------------|
|       | Colorectal cancer ≥ 30 | Dalteparin sodium 2500 IU (subcutaneously about 2 days) | No prophylaxis | DVT (day 6±1, duplex ultrasound) | High risk of bias Blinding of participants and personnel |

### Note

- **ITT**: Intention to treat
- **PP**: Per protocol
- **AE**: Adverse event
- **NR**: Not reported
- **DVT**: Deep vein thrombosis
- **PE**: Pulmonary embolism
- **VTE**: Venous thromboembolism
- **NR**: Not reported
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>De A, Roy P, Garg VK, Pandey NK. Low-molecular-weight heparin and unfractionated heparin in prophylaxis against deep vein thrombosis in critically ill patients undergoing major surgery. Blood Coagulation and Fibrinolysis. 2010;21(1):57-61.</td>
<td><strong>Inclusion criteria</strong>  Critically ill patients &gt; 40 years old Scheduled to undergo major elective surgery <strong>Exclusion criteria</strong> Congenital or acquired bleeding diathesis Had hepatic or renal failure Heparin-induced thrombocytopenia Hemorrhagic stroke Gastrointestinal hemorrhage in previous 3 months Pregnant or lactating</td>
<td>Low-dose unfractionated heparin, 5000 IU, subcutaneously, twice daily, begun 1-12h before surgery, at least 6 days</td>
<td>Enoxaparin, 40 mg, subcutaneously, once daily + placebo injection, begun 1-12h before surgery, at least 6 days</td>
<td><strong>Analysed patients</strong>  n = 81 (unclear) <strong>Drop-outs</strong> unclear</td>
<td><strong>Unclear risk of bias</strong>  Random sequence generation Allocation concealment Blinding of participants and personnel Blinding of outcome assessment Incomplete outcome data</td>
</tr>
</tbody>
</table>

Undergoing colorectal surgeries under general anesthesia in the lithotomy position

**Exclusion criteria**
- DVT prior to surgery
- Severe or accelerated hypertension
- Renal or hepatic failure
- Documented systemic bleeding diathesis
- Septic endocarditis
- Received prior anticoagulants, NSAIDs or antiplatelet therapy
- Hypersensitivity to heparin, LMWH or contrast media
- Cerebral hemorrhage 3 months before surgery
- Eye, ear, CNS surgery less than a month before surgery
- < 40 kg
- Pregnant or lactating
- Systemic sepsis
- Acute infectious disease

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>Results</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Barreto SG, et al. Postoperative deep vein thrombosis in patients with colorectal cancer. Indian Journal of Gastroenterology. 2008;27(2):71-3.</td>
<td>Undergoing colorectal surgeries under general anesthesia in the lithotomy position</td>
<td>DVT prior to surgery Severe or accelerated hypertension Renal or hepatic failure Documented systemic bleeding diathesis Septic endocarditis Received prior anticoagulants, NSAIDs or antiplatelet therapy Hypersensitivity to heparin, LMWH or contrast media Cerebral hemorrhage 3 months before surgery Eye, ear, CNS surgery less than a month before surgery &lt; 40 kg Pregnant or lactating Systemic sepsis Acute infectious disease</td>
<td>n = 48 (ITT) <strong>Drop-outs</strong> n = 0</td>
<td>PE (day 6±1) 0 / 0</td>
<td><strong>Unclear risk of bias</strong>  Random sequence generation Blinding of outcome assessment Other sources of bias (only 99 of the 189 patients planned in sample size calculation were included)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>Results</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>De A, Roy P, Garg VK, Pandey NK. Low-molecular-weight heparin and unfractionated heparin in prophylaxis against deep vein thrombosis in critically ill patients undergoing major surgery. Blood Coagulation and Fibrinolysis. 2010;21(1):57-61.</td>
<td><strong>Inclusion criteria</strong>  Critically ill patients &gt; 40 years old Scheduled to undergo major elective surgery <strong>Exclusion criteria</strong> Congenital or acquired bleeding diathesis Had hepatic or renal failure Heparin-induced thrombocytopenia Hemorrhagic stroke Gastrointestinal hemorrhage in previous 3 months Pregnant or lactating</td>
<td>Low-dose unfractionated heparin, 5000 IU, subcutaneously, twice daily, begun 1-12h before surgery, at least 6 days</td>
<td>Enoxaparin, 40 mg, subcutaneously, once daily + placebo injection, begun 1-12h before surgery, at least 6 days</td>
<td><strong>Analysed patients</strong>  n = 81 (unclear) <strong>Drop-outs</strong> unclear</td>
<td><strong>Unclear risk of bias</strong>  Random sequence generation Allocation concealment Blinding of participants and personnel Blinding of outcome assessment Incomplete outcome data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>Results</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>De A, Roy P, Garg VK, Pandey NK. Low-molecular-weight heparin and unfractionated heparin in prophylaxis against deep vein thrombosis in critically ill patients undergoing major surgery. Blood Coagulation and Fibrinolysis. 2010;21(1):57-61.</td>
<td><strong>Inclusion criteria</strong>  Critically ill patients &gt; 40 years old Scheduled to undergo major elective surgery <strong>Exclusion criteria</strong> Congenital or acquired bleeding diathesis Had hepatic or renal failure Heparin-induced thrombocytopenia Hemorrhagic stroke Gastrointestinal hemorrhage in previous 3 months Pregnant or lactating</td>
<td>Low-dose unfractionated heparin, 5000 IU, subcutaneously, twice daily, begun 1-12h before surgery, at least 6 days</td>
<td>Enoxaparin, 40 mg, subcutaneously, once daily + placebo injection, begun 1-12h before surgery, at least 6 days</td>
<td><strong>Analysed patients</strong>  n = 81 (unclear) <strong>Drop-outs</strong> unclear</td>
<td><strong>Unclear risk of bias</strong>  Random sequence generation Allocation concealment Blinding of participants and personnel Blinding of outcome assessment Incomplete outcome data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>Results</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>De A, Roy P, Garg VK, Pandey NK. Low-molecular-weight heparin and unfractionated heparin in prophylaxis against deep vein thrombosis in critically ill patients undergoing major surgery. Blood Coagulation and Fibrinolysis. 2010;21(1):57-61.</td>
<td><strong>Inclusion criteria</strong>  Critically ill patients &gt; 40 years old Scheduled to undergo major elective surgery <strong>Exclusion criteria</strong> Congenital or acquired bleeding diathesis Had hepatic or renal failure Heparin-induced thrombocytopenia Hemorrhagic stroke Gastrointestinal hemorrhage in previous 3 months Pregnant or lactating</td>
<td>Low-dose unfractionated heparin, 5000 IU, subcutaneously, twice daily, begun 1-12h before surgery, at least 6 days</td>
<td>Enoxaparin, 40 mg, subcutaneously, once daily + placebo injection, begun 1-12h before surgery, at least 6 days</td>
<td><strong>Analysed patients</strong>  n = 81 (unclear) <strong>Drop-outs</strong> unclear</td>
<td><strong>Unclear risk of bias</strong>  Random sequence generation Allocation concealment Blinding of participants and personnel Blinding of outcome assessment Incomplete outcome data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
<th>Intervention</th>
<th>Control</th>
<th>Results</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>De A, Roy P, Garg VK, Pandey NK. Low-molecular-weight heparin and unfractionated heparin in prophylaxis against deep vein thrombosis in critically ill patients undergoing major surgery. Blood Coagulation and Fibrinolysis. 2010;21(1):57-61.</td>
<td><strong>Inclusion criteria</strong>  Critically ill patients &gt; 40 years old Scheduled to undergo major elective surgery <strong>Exclusion criteria</strong> Congenital or acquired bleeding diathesis Had hepatic or renal failure Heparin-induced thrombocytopenia Hemorrhagic stroke Gastrointestinal hemorrhage in previous 3 months Pregnant or lactating</td>
<td>Low-dose unfractionated heparin, 5000 IU, subcutaneously, twice daily, begun 1-12h before surgery, at least 6 days</td>
<td>Enoxaparin, 40 mg, subcutaneously, once daily + placebo injection, begun 1-12h before surgery, at least 6 days</td>
<td><strong>Analysed patients</strong>  n = 81 (unclear) <strong>Drop-outs</strong> unclear</td>
<td><strong>Unclear risk of bias</strong>  Random sequence generation Allocation concealment Blinding of participants and personnel Blinding of outcome assessment Incomplete outcome data</td>
<td></td>
</tr>
</tbody>
</table>
### Evidenztable 79: Kap. 3.1.6.1 Hüftgelenkendoprothetik und hüftgelenknahe Frakturen und Osteotomien

<table>
<thead>
<tr>
<th>Study</th>
<th><strong>Inclusion criteria / Exclusion criteria</strong> (main characteristic marked bold)</th>
<th><strong>Intervention/s</strong></th>
<th><strong>Control</strong></th>
<th><strong>Results IGn / CG; p (primary outcome marked bold)</strong></th>
<th><strong>Risk of bias</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson DR, Dunbar MJ, Bohm ER, Belzile E, Kahn SR, Zukor D, et al.</td>
<td><strong>Inclusion criteria</strong>&lt;br&gt;All patients undergoing elective unilateral total hip arthroplasty&lt;br&gt;Long-term aspirin daily dose &lt; 100 mg (amendment during recruiting)</td>
<td>Treatment first 10 days:&lt;br&gt;5000 U of the low-molecular-weight heparin (dalteparin) once daily by subcutaneous injection + placebo aspirin tablets once daily for 28 more days</td>
<td>81 mg of aspirin orally + placebo dalteparin injections, which contained Saline once daily for 28 more days</td>
<td><strong>PP</strong> Symptomatic VTE (90 days, compression ultrasonography)&lt;br&gt;1.3% / 0.3% 0.22</td>
<td><strong>Unclear risk of bias</strong>&lt;br&gt;Other sources of bias (inconsistent reporting of patient flow)</td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong>&lt;br&gt;Hip fracture in the previous 3 months&lt;br&gt;Metastatic cancer&lt;br&gt;Life expectancy less than 6 months&lt;br&gt;Bleeding that precluded use of anticoagulant prophylaxis&lt;br&gt;Active peptic ulcer disease or gastritis that precluded aspirin use&lt;br&gt;Aspirin allergy&lt;br&gt;Heparin-induced thrombocytopenia or heparin allergy&lt;br&gt;Creatinine clearance less than 30 mL / min per 1.73 m²&lt;br&gt;Platelet count less than 100 x 10⁹ cells / L&lt;br&gt;Need for long-term anticoagulation due to a pre-existing comorbid condition or VTE developing after surgery but before randomization</td>
<td><strong>Analysed patients</strong>&lt;br&gt;n = 400 (modified—ITT, at least one dose of study drug)&lt;br&gt;n = 398 (PP, excluding drop outs)&lt;br&gt;&lt;br&gt;<strong>Drop-outs</strong>&lt;br&gt;n = 2</td>
<td><strong>Analysed patients</strong>&lt;br&gt;n = 385 (modified—ITT, at least one dose of study drug)&lt;br&gt;n = 380 (PP, excluding drop outs)&lt;br&gt;&lt;br&gt;<strong>Drop-outs</strong>&lt;br&gt;n = 6</td>
<td><strong>Modified-ITT</strong> Major bleeding (90 days)&lt;br&gt;0.3% / 0; 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minor bleeding (90 days)&lt;br&gt;4.5% / 2.1%; 0.164</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality (90 days)&lt;br&gt;0.3% / 0; 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wound infection (90 days)&lt;br&gt;2.5% / 3.1%; 0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Myocardial infarction (90 days)&lt;br&gt;0.3% / 0; 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stroke or transient ischemic attack (90 days)&lt;br&gt;0 / 0; 1.00</td>
<td></td>
</tr>
</tbody>
</table>
### Studie

| B Bramlage P, Michae -  
|als HC, Melzer N.  
|Comparison of  
|3,000 and 5,000 IU  
aXa/day certoparin  
in the prevention of  
deep-vein thrombosis  
after total hip  
replacement.  
Thrombosis Journal  
2012;10.  

<table>
<thead>
<tr>
<th><strong>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</strong></th>
<th><strong>Intervention/s</strong></th>
<th><strong>Control</strong></th>
<th><strong>Results IGn / CG; p (primary outcome marked bold)</strong></th>
<th><strong>Risk of bias (listed are only the unclear and/or high risk items)</strong></th>
</tr>
</thead>
</table>
| **Inclusion criteria**  
≥ 40 years  
Scheduled for elective primary hip replacement |  
3,000 IU aXa of certoparin subcutaneously once a day, prophylactic treatment was continued for a minimum of 8 up to a maximum 16 days |  
5,000 IU aXa of certoparin subcutaneously once a day, prophylactic treatment was continued for a minimum of 8 up to a maximum 16 days |  
**PP**  
DVT (8-16 days after surgery, bilateral ascending venography) | Unclear risk of bias  
Random sequence generation  
Allocation concealment  
Incomplete outcome data  
Other sources of bias (statistical test not reported; rate of PE inconsistently reported) |
| **Exclusion criteria**  
Severe renal impairment (serum creatinine > 200 μmol / l) or hepatic dysfunction (INR > 1.2)  
Severe hypertension (B> 200 / 105 mmHg)  
Known bleeding diathesis  
Allergy to heparin or its fragments  
Allergy to iodine containing radiopaque contrast media  
Hyperthyroidism  
Premenopausal women being pregnant or not actively preventing pregnancy  
Breast feeding  
Usage of drugs which might influence coagulation within seven days prior to surgery |  
Analysed patients  
n = 193 (PP, evaluable outcome)  
n = 247 (modified -ITT, operated patients)  
**Drop-outs**  
n = 59 |  
Analysed patients  
n = 205 (PP, evaluable outcome)  
n = 232 (modified-ITT, operated patients)  
**Drop-outs**  
n = 43 |  
**Modified ITT**  
Intraoperative bleeding  
42.5% / 51.7%;  
> 0.05  
Postoperative bleeding (till day of discharge)  
68.9% / 72.0%;  
> 0.05  
Mortality (till day of discharge)  
0.8% / 0.9%;  
> 0.05 |

| C Eriksson BI, Borris  
LC, Friedman RJ,  
Haas S, Huisman MV,  
Kakkar AK, et  

<table>
<thead>
<tr>
<th><strong>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</strong></th>
<th><strong>Intervention/s</strong></th>
<th><strong>Control</strong></th>
<th><strong>Results IGn / CG; p (primary outcome marked bold)</strong></th>
<th><strong>Risk of bias (listed are only the unclear and/or high risk items)</strong></th>
</tr>
</thead>
</table>
| **Inclusion criteria**  
≥ 18 years  
Scheduled to undergo elective total hip arthroplasty |  
Rivaroxaban, 10 mg, oral, once daily, beginning after surgery, through day 35 (range 31 – 39) + a placebo injection |  
Enoxaparin, 40 mg, subcutaneously once daily, beginning the evening before surgery, through day 35 (range 31 – 39) + a placebo tablet |  
**PP**  
DVT (symptomatic or bilateral venography) + nonfatal PE + mortality (30 - 42 days) |  
1.1% / 3.7%;  
< 0.001  
DVT (during treatment, symptomatic or bilateral venography)  
0.8% / 3.4%;  
< 0.001  
Nonfatal PE (during treatment)  
0.3% / 0.1%;  
0.37  
Mortality (during  
- |
Study | Inclusion criteria / Exclusion criteria (main characteristic marked bold) | Intervention/s | Control | Results IGn / CG; p (primary outcome marked bold) | Risk of bias (listed are only the unclear and/or high risk items)
---|---|---|---|---|---
Eriksson BI, Dahl OE, Huo MH, Kurth AA, Hantel S, Hermansson K, et al. | **Inclusion criteria** ≥ 18 years Scheduled for primary, unilateral, elective total hip arthroplasty **Exclusion criteria** Bleeding-related contraindications Contraindications to enoxaparin or | Dabigatran 220 mg (2 x 110 mg capsules), once-daily, starting 1-4 hours after surgery (half doses) + subcutaneous placebo, start evening before surgery; both for 28-35 days | Enoxaparin 40 mg subcutaneous injection, start evening before surgery + oral placebo, 1-4 hours after surgery; both for 28-35 days | **Analysed patients** n = 785 (PP, treated with study drug, underwent surgery and underwent venography DVT (symptomatic or compression ultrasound or venography) + PE + mortality (during treatment) | Unclear risk of bias Incomplete outcome data |
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
| Thrombosis and Haemostasis, 2011;105(4):721-9. | - Dabigatran treatment - Elevated liver enzymes (alanine aminotransferase level greater than three times the upper limit of the normal range) - Severe renal insufficiency [creatinine clearance < 30 ml / minute] - Known inherited or acquired clinically significant bleeding disorder - Major surgery - Trauma - Uncontrolled hypertension - Myocardial infarction within the last 3 months - History of acute intracranial disease - Hemorrhagic stroke - Gastrointestinal, urogenital bleeding or ulcer disease within the last 6 months - Severe liver disease - Aspartate or alanine aminotransferase levels higher than 2× the upper limit of the normal range within the last month - Severe renal insufficiency (creatinine clearance < 30 mL / min) - Need for concomitant longacting nonsteroidal anti-inflammatory drug therapy - Treatment with an anticoagulant during study drug treatment - Active malignant disease - Platelet count less than 100 × 10⁹ / L, pregnant, nursing - Premenopausal women of child-bearing potential who were not practicing effective birth control | **Analysed patients**  
- n = 792 (PP, treated with study drug, underwent surgery and had venography data)  
- n = 1010 (modified-ITT, received at least one dose of study drug)  
- n = 1001 (Modified-ITT, treated with study drug, underwent surgery)  
- n = 942 (PP, completed follow-up) | underwent surgery and had venography data  
- n = 1003 (modified-ITT, received at least one dose of study drug)  
- n = 992 (Modified-ITT, treated with study drug, underwent surgery)  
- n = 951 (PP, completed follow-up) | DVT (during treatment, compression ultrasound or venography)  
7.7% / 8.8%; < 0.0001 (non-inferiority); 0.43 (superiority)  
Major bleeding (during treatment)  
1.4% / 0.9%; 0.40 (superiority)  
Bleeding (during treatment)  
9.7% / 8.3%; 0.26 (superiority)  
AE (during treatment)  
67.7% / 69.4%; NR  
SAE (during treatment)  
5.6% / 5.9%; NR  
**Modified-ITT, received at least one dose of study drug and underwent surgery**  
Mortality (during treatment)  
0.0% / 0.1%; 0.50 (superiority)  
Symptomatic DVT (during treatment)  
0.0% / 0.4%; 0.06 (superiority)  
Symptomatic VTE (during treatment)  
0.1% / 0.6%; 0.40 (superiority) | Drop-outs  
- n = 244  
Drop-outs  
- n = 234 |
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic non-fatal PE (during treatment)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1% / 0.2%; 0.62 (superiority)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>PP, completed follow-up</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DVT (symptomatic or compression ultrasound or venography) + PE + mortality (during follow-up [3 months±7 days])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2% / 0.4%; 0.69 (superiority)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality (during follow-up-3 months±7 days)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0% / 0.1%; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic VTE (during follow-up [3 months±7 days])</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2% / 0.2%; NR</td>
</tr>
<tr>
<td>Hardwick ME, Pulido PA, Colwell CW, Jr.</td>
<td>A mobile compression device compared with low-molecular-weight heparin for prevention of venous thromboembolism in total hip arthroplasty. Orthopaedic nursing / National Association of Orthopaedic Nurses. 2011;30(5):312-6.</td>
<td>Mobile compression device, provided in operating room, continued use for 10 days</td>
<td>Mobile compression device, provided in operating room, continued use for 10 days</td>
<td><strong>ITT (according authors)</strong></td>
<td><strong>High risk of bias</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Inclusion criteria</strong> &gt; 18 years</td>
<td><strong>Analysed patients</strong> n = 198 (safety analysis, inclusion not specified) n = 196 (ITT, according authors)</td>
<td><strong>Analysed patients</strong> n = 194 (safety analysis, inclusion not specified) n = 190 (ITT, according authors)</td>
<td><strong>DVT (day 10-12, bilateral duplex ultrasound)</strong> 4.1% / 4.2%; &gt; 0.05</td>
<td><strong>Allocation concealment</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Unilateral total hip arthroplasty</strong></td>
<td><strong>Drop-outs</strong> NR</td>
<td><strong>Drop-outs</strong> NR</td>
<td><strong>PE (day 10-12)</strong> 1% / 1%; &gt; 0.05</td>
<td><strong>Blinding of participants and personnel</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong> History of thrombosis Mental deficiency Known coagulation disorder Solid malignant tumor Peptic ulcer disease</td>
<td></td>
<td></td>
<td><strong>Safety analysis</strong></td>
<td><strong>Unclear risk of bias</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Major Bleeding</strong> (during treatment ) 0% / 6%; 0.0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Minor bleeding</strong> (during treatment) 0.37% / 0.40%; NR</td>
</tr>
</tbody>
</table>

NR = nicht relevant
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Inclusion criteria</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≥ 18 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Staged bilateral hip arthroplasty</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk of bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concomitant use of HIV protease inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fibrinolytic therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned intermittent pneumatic compression during study period</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conditions preventing bilateral venography</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Requirement for an anticoagulant that could not be discontinued</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Analysed patients</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 1228 (modified-ITT, at least one study medication)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 864 (PP, at least one dose of study medication, had undergone planned surgery, and had adequate assessment of thromboembolism)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Drop-outs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 440</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Oral rivaroxaban</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 mg tablets once daily, 6–8 hours after wound closure for 31–39 days + placebo injections starting 12 hours before surgery for 10–14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Analysed patients</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 1229 (modified-ITT, at least one study medication)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 869 (PP, at least one dose of study medication, had undergone planned surgery, and had adequate assessment of thromboembolism)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Drop-outs</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 454</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Subcutaneous injections of enoxaparin sodium</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 mg once daily, 12 hours before surgery and restarted 6–8 hours after wound closure for 10–14 days + placebo tablets starting 6–8 hours after wound closure for 31–39 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Modified-ITT</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major bleeding events (during treatment)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / 1; NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>AE (during treatment)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.5% / 68.1%; NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>SAE + AE (during treatment)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60.4% / 61.7%; &gt; 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Inclusion criteria</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elective total hip replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revision of a previously inserted hip prosthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active bleeding or at high risk for bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contraindication to anticoagulant prophylaxis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Apixaban 2.5 mg, orally twice daily + placebo injections once daily; Apixaban start 12 to 24 hours after wound closure + injection placebo start 12 hours±3 hours before surgery continued after surgery according to the investiga-</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Enoxaparin 40 mg subcutaneously, once daily + placebo tablets twice daily; enoxaparin start 12 hours±3 hours before surgery, continued after surgery according to the investiga-</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Modified-ITT, at least one study medication</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Bleeding (during treatment)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8% / 0.7%; 0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>AE (during treatment)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>65.5% / 68.1%; NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Laxis</td>
<td>Need for ongoing anticoagulant or antiplatelet treatment</td>
<td>tor’s standard of care for 32 to 38 days</td>
<td>24 hours after wound closure for 32 to 38 days</td>
<td><strong>Analysed patients</strong>&lt;br&gt;n = 2673 (modified-ITT, received at least one study medication)&lt;br&gt;n = 2598 (PP, completed follow up)&lt;br&gt;n = 1949 (PP, primary outcome that could be evaluated)&lt;br&gt;&lt;br&gt;<strong>Drop-outs</strong>&lt;br&gt;n = 75</td>
<td><strong>PP, completed follow up</strong>&lt;br&gt;Symptomatic DVT (day 90-100, bilateral venography) 1 / 8; NR&lt;br&gt;Non-fatal PE (day 90-100) 2 / 9; NR&lt;br&gt;Mortality (day 90-100) 5 / 2; NR&lt;br&gt;<strong>PP, primary outcome that could be evaluated</strong>&lt;br&gt;DVT (bilateral venography) + nonfatal PE + death (during treatment) 1.4% / 3.9%; &lt; 0.001&lt;br&gt;DVT (during treatment, bilateral venography) 1.1% / 3.6%; NR&lt;br&gt;Proximal DVT + PE (during treatment, bilateral venography) 0.5% / 1.1%; 0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yokote R, Matsu-&lt;br&gt;bara M, Hirasawa N, Hagio S, Ishii K, Takata C. Is routine chemical thrombo-prophylaxis after total hip replacement really necessary in a Japanese population? Journal of Bone and Joint Surgery - Series B. 2011;93 B(2):251-6.</td>
<td>≥ 20 years&lt;br&gt;Elective primary unilateral total hip replacement</td>
<td>Fondaparinux 2.5mg subcutaneous (once daily), starting postoperative ly for 10 days + thigh-high elastic compression, pneumatic intermittent compression device (removed on)</td>
<td>Enoxaparin 40 mg (20 mg twice daily) starting postoperative ly for 10 days + thigh-high elastic compression, pneumatic intermittent compression device (removed on)</td>
<td>Placebo (0.5 ml of isotonic saline) starting postoperative ly for 10 days + thigh-high elastic compression bandage + pneumatic intermittent compression device (re-&lt;br&gt;VTE (day 11, bilateral duplex ultrasonography) 7.1% / 6.0% / 7.2%; 0.95&lt;br&gt;DVT (day 11, duplex ultrasonography) 7.1% / 6.0% / 7.2%; 0.95&lt;br&gt;<strong>Symptomatic</strong>&lt;br&gt;Unclear risk of bias Random sequence generation Allocation concealment</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intention/s</td>
<td>Control</td>
<td>Results IGN / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------------------------------------------------</td>
<td>--------------------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Coagulation disorder including antiphospholipid syndrome</td>
<td>second post-operative day + mobilisation exercises</td>
<td>moved on second post-operative day + mobilisation exercises</td>
<td>DVT (day 11) 1 / 0 / 0; 0.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solid malignant tumour or a peptic ulcer</td>
<td>Analysed patients n = 84 (PP, received at least one dose of drug, undergone the appropriate surgery and had an adequate assessment for VTE)</td>
<td>Analysed patients n = 83 (PP, received at least one dose of drug, undergone the appropriate surgery and had an adequate assessment for VTE)</td>
<td>PE (day 11) 0 / 0 / 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major surgery in the preceding three months</td>
<td>N = 1</td>
<td></td>
<td>Analysed patients n = 83 (PP, received at least one dose of drug, undergone the appropriate surgery and had an adequate assessment for VTE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caucasian patients</td>
<td>N = 3</td>
<td></td>
<td></td>
<td>Bleeding (day 11) 7 / 6 / 2; 0.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N = 3</td>
<td></td>
<td></td>
<td>VTE (day 84, bilateral duplex ultrasonography) 7.1% / 6.0% / 7.2%; 0.95</td>
</tr>
</tbody>
</table>
### Evidenztable 80: Kap. 3.1.6.2 Kniegelenkendoprothetik und kniegelenknahe Frakturen und Osteotomien

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrellier MT, Lebel B, Parienti JJ, Mismetti P, Dutheil JJ, Vielpeau C.</td>
<td><strong>Inclusion criteria</strong>&lt;br&gt;≥ 45 years&lt;br&gt;First total unilateral knee arthroplasty</td>
<td>35±5 days after surgery: Unfractionated heparin (5000 U, two to three times per day), or 4000 IU enoxaparin, or 5000 IU dalteparin, or 4500 IU tinzaparin, or body-weight adjusted nadroparin, or 2.5 mg fondaparinux</td>
<td>10±2 days after surgery: Unfractionated heparin (5000 U, two to three times per day), or 4000 IU enoxaparin, or 5000 IU dalteparin, or 4500 IU tinzaparin, or body-weight adjusted nadroparin, or 2.5 mg fondaparinux</td>
<td><strong>Proximal DVT (ultrasonography)+ any symptomatic DVT (extra duplex ultrasonography), non-fatal symptomatic PE + major bleeding + heparin-induced thrombocytopenia + all-cause death (day 35±5 after surgery)</strong>&lt;br&gt;2.4% / 4.0%; &gt; 0.05 (non-inferiority)</td>
<td><strong>High risk of bias</strong> Blinding of participants and personnel&lt;br&gt;<strong>Unclear risk of bias</strong> Selective reporting</td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong>&lt;br&gt;History of confirmed symptomatic venous thromboembolism at any time&lt;br&gt;Stroke or myocardial infarction within the previous month&lt;br&gt;Current active bleeding&lt;br&gt;Gastrointestinal bleeding or hemorrhagic stroke within the previous six months&lt;br&gt;Brain, spinal, ophthalmological or other major surgery within the previous month&lt;br&gt;Active cancer&lt;br&gt;Renal impairment (defined as creatinine clearance according to the Cockcroft formula of 30 mL / min or less)&lt;br&gt;Hepatic impairment (prothrombin time &lt; 60%)&lt;br&gt;A contraindication to anticoagulant therapy (e.g. hemophilia)&lt;br&gt;Hypersensitivity to heparin&lt;br&gt;Required therapeutic anticoagulation</td>
<td><strong>Analysed patients</strong>&lt;br&gt;n = 422 (PP, excluding drop outs)</td>
<td><strong>Drop-outs</strong>&lt;br&gt;n = 7</td>
<td><strong>Analysed patients</strong>&lt;br&gt;n = 420 (PP, excluding drop outs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>Drop-outs</strong>&lt;br&gt;n = 8</td>
<td><strong>Proximal DVT (3 month, ultrasonography)</strong>&lt;br&gt;4 / 6; NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Symptomatic DVT (3 month, ultrasonography)</strong>&lt;br&gt;2 / 7; NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Non-fatal symptomatic PE (3 month after surgery)</strong>&lt;br&gt;1 / 2; NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Major bleeding (3 month after surgery)</strong>&lt;br&gt;3 / 3; NR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><strong>Mortality (day 35±5 after surgery)</strong>&lt;br&gt;0 / 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------------------------------------------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Chin PL, Amin MS, Yang KY, Yeo SJ, Lo NN. Thromboembolic prophylaxis for total knee arthroplasty in Asian patients: a randomised controlled trial. Journal of orthopaedic surgery (Hong Kong). 2009;17(1):1-5.</td>
<td><strong>Inclusion criteria</strong>&lt;br&gt;Elective total knee arthroplasty&lt;br&gt;Low-risk patients&lt;br&gt;Did not have any predisposition to thromboembolism</td>
<td>Graduated compression stockings (GCS), applied directly to both legs continued until day 5 to 7</td>
<td>No prophylaxis (CG)</td>
<td>DVT (measurement time point NR, bilateral duplex ultrasonography)&lt;br&gt;13% / 8% / 6% / 22%; 0.001 (overall); 0.119 (GCS vs. CG); 0.032 (IPC vs. CG); 0.001 (enoxaparin vs. CG)</td>
<td><strong>High risk of bias</strong>&lt;br&gt;Blinding of participants and personnel</td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong>&lt;br&gt;Use of anticoagulants or aspirin&lt;br&gt;History of PE or DVT in the previous year&lt;br&gt;Obesity (body mass index of &gt; 30 kg / m2)&lt;br&gt;Preoperative prolonged immobilisation or being wheelchair bound&lt;br&gt;Bleeding tendency or a history of gastrointestinal bleeding&lt;br&gt;Surgery in the previous 6 months&lt;br&gt;Cerebrovascular accident in the previous 3 months&lt;br&gt;Uncontrolled hypertension&lt;br&gt;Congestive cardiac failure&lt;br&gt;Renal or liver impairment&lt;br&gt;Allergy to heparin or heparin-induced thrombocytopenia&lt;br&gt;Varicose veins or chronic venous insufficiency&lt;br&gt;Peripheral vascular disease&lt;br&gt;Skin ulcers&lt;br&gt;Dermatitis or wounds&lt;br&gt;Malignancy</td>
<td>Intermittent pneumatic compression (IPC), with each inflation-deflation cycle lasting one minute continued until day 5 to 7</td>
<td>Analysed patients n = 110 (unclear)</td>
<td>DVT (one month, bilateral duplex ultrasonography)&lt;br&gt;0 / 0 / 0 / 0&lt;br&gt;Symptomatic PE (measurement time point NR)&lt;br&gt;1% / 0 / 0 / 1%; 0.571&lt;br&gt;Bleeding (5-7 days)&lt;br&gt;2.7% / 3.6% / 8.2% / 2.7%; 0.304</td>
<td><strong>Unclear risk of bias</strong>&lt;br&gt;Random sequence generation&lt;br&gt;Allocation concealment&lt;br&gt;Incomplete outcome data</td>
</tr>
<tr>
<td></td>
<td><strong>Analysed patients</strong>&lt;br&gt;n = 110 (unclear)</td>
<td>Injections of enoxaparin, subcutaneous, sodium 40 mg once daily, continued until day 5 to 7</td>
<td>Analysed patients n = 110 (unclear)</td>
<td>Dropouts NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Dropouts</strong>&lt;br&gt;NR</td>
<td>No</td>
<td>Analysed patients n = 110 (unclear)</td>
<td>Dropouts NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Dropouts</strong>&lt;br&gt;NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Study

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
| Kulshrestha V, Kumar S. DVT Prophylaxis After TKA: Routine Anticoagulation Vs Risk Screening Approach - A Randomized Study. Journal of Arthroplasty. 2013 | **Inclusion criteria** Primary and staged bilateral total knee arthroplasty surgery  
**Exclusion criteria** Already on anticoagulation  
Contraindications to use of non-steroidal anti-inflammatory drugs | Risk stratification*  
Risk score 0-2: Aspirin (325 mg) 12 hourly starting on the first postoperative day, for 4 weeks + sham anticoagulant injection  
Risk score > 2: Enoxaparin 40 mg subcutaneous, followed by 2 weeks of oral Aspirin (325 mg twice a day) + placebo Aspirin tablets | CG:  
20mg subcutaneous Enoxaparin, 8 hours after surgery, switch to 40 mg on the first postoperative day for two weeks  
**Analysed patients** n = 194 (ITT); risk score > 2: n = 256 (ITT)  
**Drop-outs** n = 0 | Symptomatic DVT (1year, whole-leg compression ultrasonography)  
2.4% / 1.8%; 0.487  
PE (1year)  
0.44% / 0.67%; NR  
Wound Complications (1year)  
4.4% / 8.4%; 0.014 | - |
| Kulshrestha V, Kumar S. DVT Prophylaxis After TKA: Routine Anticoagulation Vs Risk Screening Approach - A Randomized Study. Journal of Arthroplasty. 2013 | **Inclusion criteria** Primary and staged bilateral total knee arthroplasty surgery  
**Exclusion criteria** Already on anticoagulation  
Contraindications to use of non-steroidal anti-inflammatory drugs | Risk stratification*  
Risk score 0-2: Aspirin (325 mg) 12 hourly starting on the first postoperative day, for 4 weeks + sham anticoagulant injection  
Risk score > 2: Enoxaparin 40 mg subcutaneous, followed by 2 weeks of oral Aspirin (325 mg twice a day) + placebo Aspirin tablets | CG:  
20mg subcutaneous Enoxaparin, 8 hours after surgery, switch to 40 mg on the first postoperative day for two weeks  
**Analysed patients** n = 194 (ITT); risk score > 2: n = 256 (ITT)  
**Drop-outs** n = 0 | Symptomatic DVT (1year, whole-leg compression ultrasonography)  
2.4% / 1.8%; 0.487  
PE (1year)  
0.44% / 0.67%; NR  
Wound Complications (1year)  
4.4% / 8.4%; 0.014 | - |
RISK STRATIFICATION FOR DVT PROPHYLAXIS

Complete this form to stratify the patient for risk of DVT & Bleeding and follow the chart given to institute DVT Prophylaxis

1. Check all statements that apply.
2. Add up the number of points shown for each of the checked statements to get the DVT risk factor score.

Add 3 points for each of the following statement if true
a) Age > 75 b) HOURS / O DVT or PE c) Family HOURS / O Thrombosis days) Family HOURS / O Blood-clotting disorders

Add 2 points for each of the following if true
a) Age 60- 74 yr b) Cancer (current or previous) c) Recent (06 wks) major surgery lasting > 45 minutes b) Recent (06 wks) confinement to bed for more than 72 hours c) Plaster immobilization lower limb in the past 6 wk days) Central venous access

Add 1 point for each of the following if true
a) Age 41–60 years b) Varicose veins c) Major surgery within the past month d) History of Inflammatory Bowel Disease (IBD) e) Legs are currently swollen f) Overweight or obese g) HOURS / O Recent MI h) Congestive heart failure j) Serious infection (for example, pneumonia) k) COPD l) IDDM m) Currently on bed rest or restricted mobility n) HRT o) Pregnant / had a baby within the past month p) Smoker

Study | Inclusion criteria / Exclusion criteria (main characteristic marked bold) | Intervention/s | Control | Results IGn / CG; p (primary outcome marked bold) | Risk of bias (listed are only the unclear and/or high risk items)
---|---|---|---|---|---
Lassen MR, Ageno W, Borris LC, Lieberman JR, Rosencher N, Bandel TJ, et al. Rivaroxaban versus enoxaparin for thromboprophylaxis after total knee arthroplasty. New England Journal of Medicine. 2008;358(26):2776-86. | **Inclusion criteria** | Rivaroxaban, oral 10 mg tablet, once-daily, initiated 6 to 8 hours after wound closure, then every 24h for 10-14 days, dummy NR | Enoxaparin sodium injection 40 mg, once-daily, initiated 12 hours before surgery + again 6 to 8 hours after wound closure, then every 24h for 10-14 days, dummy NR | PP DVT (bilateral venography)+ nonfatal PE + death (day 13 – 17 after surgery) 9.6% / 18.9%; < 0.001 DVT (day 11 – 15 after surgery, bilateral venography) 9.6% / 18.2%; < 0.001 PE (day 13 – 17 after surgery) 0 / 4; 0.06 Modified-ITT (underwent surgery) Mortality (day 30 – 35 after surgery) 0 / 4; 0.05 | -
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n = 824 (PP, eligible for assessment)</td>
<td>cation and underwent surgery) n = 878 (PP, eligible for assessment)</td>
<td>Symptomatic DVT + PE (day 30 – 35 after surgery) 5 / 3; 0.44</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drop-outs n = 430</td>
<td>Drop-outs n = 429</td>
<td>Modified-ITT (at least one study medication)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bleeding (2 days after last dose) 4.9% / 4.8%; 0.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Major bleeding (2 days after last dose) 0.6% / 0.5%; 0.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE (2 days after last dose) 63.6% / 68.1%; NR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lassen MR, Raskob GE, Gallus A, Pineo G, Chen D, Portman RJ. Apixaban or enoxaparin for thromboprophylaxis after knee replacement. New England Journal of Medicine. 2009;361(6):594-604.</td>
<td>Total knee replacement surgery for one or both knees Revision of a previously inserted artificial joint</td>
<td>Apixaban orally, 2.5 mg, twice daily + injection of placebo, start 12 to 24 hours after surgery, 10 to 14 days treatment</td>
<td>Enoxaparin, subcutaneously, 30 mg every 12 hours + placebo tablets, start 12 to 24 hours after surgery, 10 to 14m days treatment</td>
<td>Modified-ITT, at least one study drug Bleeding (during treatment) 5.3% / 6.8%; 0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysed patients n = 1596 (modified-ITT, at least one study drug) n = 1562 (PP, at least one study drug + complet ed follow up) n = 1157(PP, efficacy outcome that could be evaluated)</td>
<td></td>
<td></td>
<td>SAE (60 days after last study medication) 8.5% / 8.6%; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysed patients n = 1588 (modified-ITT, at least one study drug) n = 1554 (PP, at least one study drug + complet ed follow up) n = 1130 (PP, efficacy outcome that could be evaluated)</td>
<td></td>
<td></td>
<td>Mortality (60 days after last study medication) 3 / 6; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drop-outs n = 442</td>
<td>Drop-outs n = 466</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PP, at least one study drug + completed follow up PE (60 days after last study medication) 17 / 12; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic DVT (60 days after last study medication, bilateral venography) 6 / 9; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PE (bilateral venography) + nonfatal PE + death (during treatment) 9.0% / 8.8%; 0.06 (non-inferiority)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DVT (during treatment, bilateral venography) 7.8% / 8.2%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic DVT</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------------------------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------------------------------------------</td>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Lassen MR, Raskob GE, Gallus A, Pinedo G, Chen D, Hornick P. Apixaban versus enoxaparin for thromboprophylaxis after knee replacement (ADVANCE-2); a randomised double-blind trial. The Lancet. 2010;375(9717):807-15.</td>
<td><strong>Inclusion criteria</strong> Unilateral elective total knee replacement or revision</td>
<td><strong>Intervention/s</strong> Apixaban 2.5 mg twice daily oral; started 12–24 hours, continued for 10–14 days + matching subcutaneous placebo</td>
<td>Enoxaparin 40 mg per day subcutaneous; started 12 hours before operation, injections were resumed after surgery according to investigators’ standard of care; continued for 10–14 days + matching oral placebo</td>
<td><strong>Modified-ITT Bleeding (during treatment)</strong> 6.9% / 8.4; 0.141</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong> Active bleeding Contraindication to anticoagulant prophylaxis</td>
<td><strong>Analysed patients</strong> n = 1501 (modified-ITT, at least one study drug) n = 1458 (PP, completed follow up) n = 976 (PP, assessable primary efficacy outcome)</td>
<td><strong>Drop-outs</strong> n = 70</td>
<td><strong>AE (during treatment)</strong> 52% / 55%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Needed continuing anticoagulant or antithrombotic treatment Uncontrolled hypertension Active hepato-biliary disease Impaired renal function Thrombocytopenia Anaemia Heparin allergy Allergy to radiographic contrast dye Other disorders preventing bilateral venography</td>
<td></td>
<td><strong>PP, completed follow-up</strong> Symptomatic DVT (day 60 after last dose of study drug, venography or ultrasonography) 5 / 8; NR</td>
<td>PE (day 60 after last dose of study drug) 7 / 1; NR</td>
<td>Mortality 3 / 1; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>PP, assessable efficacy outcome</strong> DVT+ non-fatal PE + all-cause death (12 days or during treatment + 2 days) 15.06% / 24.37%; &lt; 0.0001 (superiority)</td>
<td></td>
<td>DVT (12 days or during treatment + 2 days, venography or ultrasonography) 14.6% / 24.4%; NR</td>
<td></td>
</tr>
<tr>
<td>RE-MOBILIZE: Oral Thrombin Inhibitor Dabigatran Etexilate vs North American Enoxaparin Regimen for Prevention of Venous Thromboembo-</td>
<td><strong>Inclusion criteria</strong> ≥ 18 years ≥ 40 kg weight Elective unilateral total knee arthroplasty</td>
<td><strong>Intervention/s</strong> Dabigatran etexilate 220mg, once daily, 2 capsules in the morning for 12–15 days after surgery + Placebo</td>
<td>Dabigatran etexilate 150mg, once daily, 2 capsules in the morning for 12–15 days after surgery + Placebo</td>
<td><strong>PP DVT(symptomatic or compression ultrasound or venography) + symptomatic PE + death (during treatment)</strong> 31.1% / 33.7% / 25.3 %; &gt; 0.05 (enoxaparin vs. dabigatran 220mg);</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Enoxaparin 30mg, twice daily, Subcutan injection for 12-15 days after surgery + Placebo oral</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------------------------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>Lombi After Knee Arthroplasty Surgery, Journal of Arthroplasty, 2009;24(1):1-9.</td>
<td>significant bleeding disorder Major surgery Trauma Uncontrolled hypertension Myocardial infarction within the last 3 months History of acute intracranial disease Hemorrhagic stroke Gastrointestinal Urogenital bleeding or ulcer disease within the last 6 months Severe liver disease Aspartate or alanine aminotransferase levels higher than 2× the upper limit of the normal range within the last month Severe renal insufficiency (creatinine clearance &lt; 30 mL/min) Need for concomitant longacting nonsteroidal anti-inflammatory drug therapy Treatment with an anticoagulant during study drug treatment Active malignant disease Platelet count less than 100 × 10^9/ L, pregnant, nursing Premenopausal women of child-bearing potential who were not practicing effective birth control</td>
<td>subcutan injection</td>
<td>Placebo (subcutan injection)</td>
<td>Analysed patients n = 857 (modified-ITT, treated at least once) n = 604 (PP, evaluable outcome) Drop-outs n = 256</td>
<td>Analysed patients n = 868 (modified-ITT, treated at least once) n = 649 (PP, evaluable outcome) Drop-outs n = 228</td>
</tr>
<tr>
<td>Turpie AG, Lassen MR, Davidson BL, Bauer KA, Gent M, Kwong LM, et al. Rivaroxaban versus enoxaparin for thromboprophylaxis</td>
<td><strong>Inclusion criteria</strong> ≥ 18 Undergoing total knee arthroplasty</td>
<td>Rivaroxaban 10 mg, once daily orally, beginning 6–8 hours after wound closure, + placebo injections, Treatment</td>
<td>Enoxaparin 30 mg, every 12h - 14 hours subcutaneous, beginning 12–24 hours after wound closure</td>
<td>PP, no major protocol violations DVT + non-fatal PE + death(17 days after surgery, ultrasound and bilateral venography) 6.7% / 9.3%; 0.036</td>
<td>-</td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>after total knee arthroplasty (REC-ORD4): a randomised trial. The Lancet. 2009;373(9676):167-3-80.</td>
<td>risk of bleeding Any disorder contraindicating the use of enoxaparin / bilateral or venography Clinically significant liver disease Renal impairment Concomitant use of drugs that strongly inhibit cytochrome P450 Pregnancy or breast-feeding Planned intermittent pneumatic compression Requirement for ongoing anticoagulant therapy</td>
<td>for 11-15 days</td>
<td>+ placebo tablets, Treatment for 11-15 days</td>
<td>(non-inferiority)</td>
<td>PP, adequate assessment</td>
</tr>
<tr>
<td></td>
<td><strong>Analysed patients</strong> n = 965 (PP, underwent surgery and adequate assessment) n = 864 (PP, underwent surgery and adequate assessment and no major protocol deviations) n = 1526 (modified ITT, received at least one study drug)</td>
<td></td>
<td><strong>Analysed patients</strong> n = 959 (PP, underwent surgery and adequate assessment) n = 878 (PP, underwent surgery and adequate assessment and no major protocol deviations) n = 1508 (modified ITT, received at least one study drug)</td>
<td><strong>DVT + non-fatal PE + death (day 17 after surgery, ultrasound and bilateral venography)</strong> 6.9% / 10.1%; 0.012 (superiority)</td>
<td>Asymptomatic DVT (day 17 ultrasound and bilateral venography) 55 / 76; NR</td>
</tr>
<tr>
<td></td>
<td><strong>Drop-outs</strong> n = 720</td>
<td></td>
<td></td>
<td>Symptomatic DVT 6 / 10; NR</td>
<td>Non-fatal PE 4 / 8; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modified-ITT</td>
<td>Symptomatic VTE (during follow-up [day 30-35 after surgery]) 3 / 3; 0.998</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality (during follow-up [day 30-35 after surgery]) 4 / 3; 0.804</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>Major Bleeding (2 days after last dose)</strong> 10 / 4; 0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality (2 days after last dose) 2 / 3; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAE (during study period) 7.5% / 8.9%; NR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AE (2 days after last dose) 80.1% / 80.6%; NR</td>
</tr>
</tbody>
</table>
### Evidenztable 81: Kap. 3.1.6.4 Arthroskopische Eingriffe an der unteren Extremität

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
<th>High risk of bias</th>
</tr>
</thead>
</table>
Arthroscopy or arthroscopy-assisted knee surgery for partial meniscectomy, cartilage shaving, cruciate ligament reconstruction, synovial resection, or combined surgical procedures  
**Exclusion criteria**
< 18  
Pregnant  
Previous VTE  
Active cancer  
Thrombophilia  
Receiving mandatory anticoagulation  
Hypersensitive to LMWH  
Recent major bleeding event  
Severe renal or hepatic failure  
Anticipated poor adherence  
Geographic inaccessibility  
Tourniquet thigh time greater than 1 hour | Full-length graduated compression stockings for 7 days (30 to 40 mm Hg at the ankle)  
**Analysed patients**
n = 660 (ITT)  
**Drop-outs**
n = 31 | Daily nadro-parin injection for 7 days (3800 anti-Xa IU)  
**Analysed patients**
n = 657 (ITT)  
**Drop-outs**
n = 12 | Asymptomatic proximal DVT (3 month, ultrasonography)  
1.1% / 0.3%; NR  
Symptomatic proximal DVT (3 month, ultrasonography)  
0.2% / 0; NR  
Asymptomatic distal DVT (3 month, ultrasonography)  
1.7% / 0.3%; < 0.05  
Symptomatic nonfatal PE (3 month)  
0.3% / 0.3%; NR  
Asymptomatic proximal DVT (ultrasonography) + symptomatic PE + all-cause mortality  
3.2% / 0.9%; 0.005  
Major bleeding (7 days)  
0.2% / 0.3%; NR  
Minor bleeding (7 days)  
3.0% / 3.5%; NR  
Clinically relevant bleeding events  
0.2% / 0.8%; NR  
Mortality (7 days)  
0 / 0  
Overall bleeding events (7 days)  
3.3% / 4.4%; NR | High risk of bias  
Blinding of participants and personnel |
### Evidenztabelle 82: Kap. 3.1.7.2 Wirbelsäulenverletzungen

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
**Exclusion criteria** - | 5000 IU of unfractionated low-dose heparin, subcutaneously 12 hourly, from the day of admission until 3 months after injury  
**Analysed patients** n = 166 (unclear)  
**Drop-outs** unclear | Not given heparin  
**Analysed patients** n = 131 (unclear)  
**Drop-outs** unclear | DVT (3 months, color Doppler) 1.8% / 3.0%; > 0.05 | **High risk of bias** Random sequence generation  
Unclear risk of bias Allocation concealment Blinding of participants and personnel Blinding of outcome assessment Incomplete outcome data Other sources of bias (statistical significance inconsistently reported) |

### Evidenztabelle 83: Kap. 3.2.1 Akute internistische Erkrankungen

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
Hospitalized for a specified acute medical illness for less than 72 hours  
Reduced mobility  
**Exclusion criteria** Contraindications for the use of enoxaparin  
Bleeding risk-related criteria (e.g. known coagulopathy)  
Concomitant conditions or diseases (e.g. severe renal insufficiency)  
Required drugs or procedures (e.g. > 2 days of prophylactic use of anti- | Subcutaneous placebo, once daily, for 10±4 days + oral Rivaroxaban (10 mg) once daily, for 35±4 days  
**Analysed patients** n = 2967 (modified-ITT, at least one dose of study medication, adequate assessment of venous thromboembolism)  
**Analysed patients** n = 3057 (modified-ITT, at least one dose of study medication)  
**Drop-outs** n = 1083 | Subcutaneous Enoxaparin (40 mg) once daily, for 10±4 days + oral placebo, once daily, for 35±4 days  
**Analysed patients** n = 3057 (modified-ITT, at least one dose of study medication)  
**Analysed patients** n = 4001 (modified-ITT, least one dose of study medication)  
**Drop-outs** | Modified-ITT, adequate assessment  
Asymptomatic proximal DVT (ultrasonography or other vascular imaging techniques) + symptomatic proximal or distal DVT + symptomatic nonfatal PE + death related to VT (35 days)  
4.4% / 5.7%; 0.02 (superiority)  
Asymptomatic proximal DVT (35 days, ultrasonography or other vascular imaging techniques) 3.5% / 4.4%; NR | **Unclear risk of bias** Incomplete outcome data Other sources of bias (multiple testing without adjustments) |
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>coagulants)</td>
<td>n = 994</td>
<td></td>
<td>inal or distal DVT (35 days, ultrasoundography or other vascular imagine techniques) 0.4% / 0.5%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Symptomatic non-fatal PE (35 days) 0.3% / 0.5%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality (35 days) 5.1% / 4.8; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modified-ITT, at least on dose of study medication</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bleeding (35 days) 4.1% / 1.7%; &lt; 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Major bleeding (35 days) 1.1% / 0.4%; &lt; 0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adverse event (during treatment, excluding bleeding) 65.4% / 65.2%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Serious adverse event (during treatment, excluding bleeding) 15.4% / 14.2%; NR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goldhaber SZ, Leizorovicz A, Kakkar AK, Haas SK, Merli G, Knabb RM, et al. Apixaban</td>
<td><strong>Inclusion criteria</strong> - Patients with hospitalized for congestive heart failure, acute res-</td>
<td>Apixaban, orally 2.5 mg twice daily for 30 days + enoxaparin placebo, injections daily, min. 6</td>
<td>Enoxaparin, subcutaneously 40 mg once daily during their stay in the hospital,</td>
<td><strong>PP</strong> Fatal or nonfatal PE + symptomatic DVT + asymptomatic proximal-</td>
<td><strong>High risk of bias</strong> Selective reporting</td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------</td>
<td>--------</td>
<td>---------------------------------------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
</tbody>
</table>
| versus enoxaparin for thromboprophylaxis in medically ill patients. New England Journal of Medicine. 2011;365(23):2167-77. | - Patients with infection (without septic shock), acute rheumatic disorder, inflammatory bowel disease with one of the following risk factors:  
  ≥ 70 years  
  ≥ 75 years  
  Previous documented venous thromboembolism  
  History of venous thromboembolism for which they received anticoagulation for at least 6 weeks  
  Cancer  
  Body-mass index ≥ 30  
  Receipt of estrogenic hormone therapy  
  Chronic heart failure or respiratory failure  
  Moderately or severely restricted in their mobility  
  Expected hospital stay of at least 3 days  
  **Exclusion criteria**  
  Confirmed venous thromboembolism  
  Disease requiring ongoing treatment with a parenteral or oral anticoagulant agent  
  Liver disease  
  Anemia  
  Thrombocytopenia  
  Severe renal disease (creatinine clearance of < 30 ml per minute as) | min. 6 days+ tablets containing an apixaban placebo, 30 days | DVT (30 days treatment, systematic bilateral compression ultrasonography) 2.71% / 3.06%; 0.44 (superiority) | Asymptomatic proximal DVT (30 days treatment, systematic bilateral compression ultrasonography) 2.36% / 2.12%; NR | Unclear risk of bias |
| | | | Analysed patients  
n = 3255 (ITT)  
n = 3184 (modified ITT, received at least one dose)  
n = 2211 (PP, evaluable outcome) | | Incomplete outcome data |
| | | | Analysed patients  
n = 3273 (ITT)  
n = 3217 (modified-ITT, received at least one dose)  
n = 2284 (PP, evaluable outcome) | | |
| | | | Drop-outs  
n = 1044 | | |
| | | | Drop-outs  
n = 989 | | |
| | | | n = 3255 (ITT)  
n = 3184 (modified ITT, received at least one dose)  
n = 2211 (PP, evaluable outcome) | | |
| | | | n = 3273 (ITT)  
n = 3217 (modified-ITT, received at least one dose)  
n = 2284 (PP, evaluable outcome) | | |
<p>| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated by the method of Cockcroft and Gault)</td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Known or suspected allergy to enoxaparin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prior heparin-induced thrombocytopenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taking two or more antiplatelet agents or aspirin at a dose higher than 165 mg per day</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgical procedure in the previous 30 days that might be associated with a risk of bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Received anticoagulant prophylaxis for venous thromboembolism in the previous 14 days</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Actively bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High risk for bleeding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Invasive procedures planned or scheduled during treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Abnormal laboratory findings: hemoglobin level of less than 9 g per decilitre, platelet count of less than 100,000 per cubic millimeter, alanine or aspartate aminotransferase level more than twice the upper limit of the normal range, direct or total bilirubin levels more than 1.5 times the upper limit of the normal range</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Women who might become pregnant, were pregnant, were breast-feeding, or were unwilling or unable to use an acceptable method of contraception</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Study**

**Inclusion criteria / Exclusion criteria (main characteristic marked bold)**

- Estimated by the method of Cockcroft and Gault
- Known or suspected allergy to enoxaparin
- Prior heparin-induced thrombocytopenia
- Taking two or more antiplatelet agents or aspirin at a dose higher than 165 mg per day
- Surgical procedure in the previous 30 days that might be associated with a risk of bleeding
- Received anticoagulant prophylaxis for venous thromboembolism in the previous 14 days
- Actively bleeding
- High risk for bleeding
- Invasive procedures planned or scheduled during treatment
- Abnormal laboratory findings: hemoglobin level of less than 9 g per decilitre, platelet count of less than 100,000 per cubic millimeter, alanine or aspartate amino transferase level more than twice the upper limit of the normal range, direct or total bilirubin levels more than 1.5 times the upper limit of the normal range
- Women who might become pregnant, were pregnant, were breast-feeding, or were unwilling or unable to use an acceptable method of contraception

**Intervention/s**

- Bleeding (90 days treatment)
- Mortality (90 days treatment)
- AE (90 days treatment)
- NR / NR; > 0.05

**Control**

- 3.26% / 3.26%; > 0.05
- 4.1% / 4.19%; > 0.05
- NR / NR; > 0.05

**Results IGn / CG; p (primary outcome marked bold)**

- 0.05
- > 0.05
- > 0.05

**Risk of bias (listed are only the unclear and/or high risk items)**

- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z

---

**Study**

**Inclusion criteria / Exclusion criteria (main characteristic marked bold)**

- Estimated by the method of Cockcroft and Gault
- Known or suspected allergy to enoxaparin
- Prior heparin-induced thrombocytopenia
- Taking two or more antiplatelet agents or aspirin at a dose higher than 165 mg per day
- Surgical procedure in the previous 30 days that might be associated with a risk of bleeding
- Received anticoagulant prophylaxis for venous thromboembolism in the previous 14 days
- Actively bleeding
- High risk for bleeding
- Invasive procedures planned or scheduled during treatment
- Abnormal laboratory findings: hemoglobin level of less than 9 g per decilitre, platelet count of less than 100,000 per cubic millimeter, alanine or aspartate amino transferase level more than twice the upper limit of the normal range, direct or total bilirubin levels more than 1.5 times the upper limit of the normal range
- Women who might become pregnant, were pregnant, were breast-feeding, or were unwilling or unable to use an acceptable method of contraception

**Intervention/s**

- Bleeding (90 days treatment)
- Mortality (90 days treatment)
- AE (90 days treatment)
- NR / NR; > 0.05

**Control**

- 3.26% / 3.26%; > 0.05
- 4.1% / 4.19%; > 0.05
- NR / NR; > 0.05

**Results IGn / CG; p (primary outcome marked bold)**

- 0.05
- > 0.05
- > 0.05

**Risk of bias (listed are only the unclear and/or high risk items)**

- B
- C
- D
- E
- F
- G
- H
- I
- J
- K
- L
- M
- N
- O
- P
- Q
- R
- S
- T
- U
- V
- W
- X
- Y
- Z

---
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias</th>
</tr>
</thead>
</table>
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Inclusion criteria**
| ma MM, Nicol P, et al. Extended- | **Acute medical illness**
| duration venous thromboembolism prophylaxis in | ≥ 40 years
| acutely ill medical | Life expectancy ≥ 6 months
| patients with recent- | Reduced mobility for up to 3 days and for at least 3 days after enrolment
| ly reduced mobility: | After surgery received subcutaneous enoxaparin, 40 mg / days, for 10±4 days
| A randomized trial. | Amendment of study protocol (at n = 4044): patients with level 2 immobility (total bed rest or being sedentary with bathroom privileges) + ≥ 75 years, previous VTE, or active or previous cancer |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Exclusion criteria**
| ma MM, Nicol P, et al. Extended- | - |
| duration venous thromboembolism prophylaxis in | |
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Analysed patients**
| ma MM, Nicol P, et al. Extended- | n = 2975 modified-ITT, patient at least treated once)
| duration venous thromboembolism prophylaxis in | n = 2485 (PP, completed study and adequate ultrasonography)
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Drop-outs**
| ma MM, Nicol P, et al. Extended- | n = 549 |
| duration venous thromboembolism prophylaxis in | |
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Analysed patients**
| ma MM, Nicol P, et al. Extended- | n = 2988 (modified-ITT, patient at least treated once)
| duration venous thromboembolism prophylaxis in | n = 2510 (PP, completed study and adequate ultrasonography)
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Drop-outs**
| ma MM, Nicol P, et al. Extended- | n = 541 |
| duration venous thromboembolism prophylaxis in | |
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Analysed patients**
| ma MM, Nicol P, et al. Extended- | n = 2975 modified-ITT, patient at least treated once)
| duration venous thromboembolism prophylaxis in | n = 2485 (PP, completed study and adequate ultrasonography)
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Drop-outs**
| ma MM, Nicol P, et al. Extended- | n = 549 |
| duration venous thromboembolism prophylaxis in | |
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Analysed patients**
| ma MM, Nicol P, et al. Extended- | n = 2988 (modified-ITT, patient at least treated once)
| duration venous thromboembolism prophylaxis in | n = 2510 (PP, completed study and adequate ultrasonography)
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |
| Hull RD, Schellong SM, Tapson VF, Monreal M, Sama- | **Drop-outs**
<p>| ma MM, Nicol P, et al. Extended- | n = 541 |
| duration venous thromboembolism prophylaxis in | |
| acutely ill medical | |
| patients with recent- | |
| ly reduced mobility: | |
| A randomized trial. | |</p>
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
≥ 40 years  
American Society of Anesthesiologists health status score of ≤ 3  
Acute decompensation of heart failure  
Active cancer (Eastern Cooperative Oncology Group performance status score of ≤ 2)  
Severe systemic infection with one of the following conditions: chronic pulmonary disease, Obesity (BMI ≥ 30), Personal history of venous thromboembolism, ≥ 60 years | **Analysed patients**  
n = 4072 (PP, unclear)  
n = 4171 (PP, receive study drug and any follow-up data) | **Analysed patients**  
n = 4044 (PP, unclear)  
n = 4136 (PP, receive study drug and any follow-up data) | **PP, unclear**  
VTE (day 90, objective testing [not specified])  
0.2% / 0.1%; NR | Unclear risk of bias  
Incomplete outcome data |
| | **Exclusion criteria**  
Major surgery or major trauma within the previous 6 weeks  
Ventilator support with intubation  
Symptomatic VTE at enrolment  
Multiple organ failure  
Evidence of an active bleeding disorder  
Contraindication to anticoagulation  
Cerebrovascular accident  
Prosthetic heart valves  
Confirmed cerebral metastases  
Known hypersensitivity to unfractionated heparin or LMWH or pork-derived products  
History of documented heparin-induced thrombocytopenia  
Persistent severe renal failure  
Spinal or epidural analgesia | **Drop-outs**  
n = 3 | **Drop-outs**  
n = 9 | Death from any cause (day 30)  
4.8% / 4.9%; 0.83 | **PP, any follow-up data**  
Death from any cause (day 90)  
8.4% / 8.6%; 0.71 |
| | | | | AE (day 90)  
37.8% / 36.9%; NR | **Major bleeding (during treatment)**  
0.4% / 0.3%; 0.35 |
| | | | | Bleeding (during treatment)  
2.2% / 1.5%; 0.01 | |
### Study


#### Inclusion criteria / Exclusion criteria

**Inclusion criteria**

- ≥ 70 years
- Acute medical illness with a significant decrease in mobility

**Exclusion criteria**

- Immobilization due to cast or fracture
- Severe sepsis or a need for ventilatory support
- LMWH / heparin for longer than 48 hours in the 5 days prior to randomization
- Indications for anticoagulation or thrombolysis
- Life-expectancy of less than 6 months, or illness with very high acute mortality rate (> 30%)
- Acute symptomatic DVT / PE
- Acute heparin-induced thrombocytopenia type II (HIT-II) or a history
- Acute non-hemorrhagic stroke or a history of this (< 3 months)
- Hemorrhagic stroke or intracranial bleeding (< 12 months)
- Acute or ongoing intracranial disease
- High risk of gastrointestinal bleeding
- Spinal or epidural anaesthesia
- Lumbar puncture, within the last 12 hours
- Uncontrolled hypertension
- Severe liver or renal disease
- Acute endocarditis
- Known active retinopathy
- Intravitreal or other intraocular bleeding

#### Intervention/s

- Certoparin, 3000 IU, subcutaneously once daily + two additional placebo injections during the day, treatment period of at least 8 days to max. 20 days

#### Control

- UFH, 5000 IU subcutaneously three times daily, treatment period of at least 8 days to max. 20 days

#### Risk of bias

(listed are only the unclear and/or high risk items)

#### Results IGn / CG; p (primary outcome marked bold)

- **Analysed patients**
  - n = 1624 (modified-ITT, received at least one dose of study drug)
  - n = 1483 (PP, evaluable endpoint, follow-up period)
  - n = 1372 (PP, evaluable primary efficacy endpoint, treatment period)
  - n = 1259 (PP, evaluable endpoint for DVT, treatment period)
  - n = 1518 (PP, evaluable endpoint for symptomatic DVT, treatment period)

- **Drop-outs**
  - n = 206

- **Modified-ITT**
  - Mortality (90 day)
    - 86 / 93; NR
  - Bleeding (during treatment + 1 day)
    - 3.2% / 4.58%; 0.0422
  - AE (90 day)
    - 1104 / 1127; NR

- **PP**
  - Proximal DVT (compression ultrasonography) + symptomatic non-fatal PE + VTE-related death (during treatment + 1 day)
    - 3.94% / 4.52; < 0.0001 (non-inferiority)
    - 3.94% / 4.52; 0.45 (superiority)
  - DVT (during treatment + 1 day)
    - 8.88% / 10.33%; > 0.05
  - Symptomatic DVT (during treatment + 1 day)
    - 4 / 5; > 0.05
  - Symptomatic DVT (during follow-up)
    - 3 / 3; > 0.05
  - Symptomatic non-fatal PE (during treatment + 1 day)
    - 7 / 3; > 0.05
  - Symptomatic non-fatal PE (during follow-up)
    - 3 / 2; > 0.05

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><strong>Inclusion criteria</strong></td>
<td></td>
<td></td>
<td><strong>High risk of bias</strong></td>
</tr>
<tr>
<td></td>
<td>≥ 40 Hospitalization due to an acute non-surgical disease</td>
<td></td>
<td></td>
<td>Blinding of participants and personnel</td>
</tr>
<tr>
<td></td>
<td>Significant recent decrease in mobility</td>
<td></td>
<td></td>
<td><strong>Unclear risk of bias</strong></td>
</tr>
<tr>
<td></td>
<td><strong>Exclusion criteria</strong></td>
<td></td>
<td></td>
<td>Other sources of bias (stopped because of low recruit-</td>
</tr>
<tr>
<td></td>
<td>Indication for anticoagulant or thrombolytic therapy</td>
<td></td>
<td></td>
<td>ment rate. Of the 1200 planned in sample size only 342 were randomized)</td>
</tr>
<tr>
<td></td>
<td>Women of childbearing age unless they were post-menopausal or using a highly effective method of birth control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Major surgical or invasive procedure within 4 weeks prior to randomization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Immobilization due to cast or fracture</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acute ischemic stroke, hemorrhagic stroke or other intracranial bleeding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uncontrolled hypertension</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Life expectancy &lt; 1 year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Active peptic ulcer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endocarditis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>History of or current HIT type II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retinopathy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Platelet count &lt; 100,000 / μl, severe renal disease (creatinine &gt; 180 µmol / l), hepatic disease (ALAT &gt; 3-fold ULN)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal or ureteral calculus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Recent history of addictive disorder</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of other investigational drugs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Analysed patients</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 163 (modified-ITT, received at least one dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 100 (PP, assessable outcome, during treatment + 1 day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 150 (PP, assessable outcome, 3 month)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Drop-outs</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Analysed patients</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 172 (modified-ITT, received at least one dose)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 103 (PP, assessable outcome, during treatment + 1 day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 100 (PP, assessable outcome, 90 days±7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Drop-outs</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n = 50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Intervention/s Control</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3000 IU anti-Xa Certoparin (daily, 10±2 days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7500 IU unfractionated heparin (twice daily, 10±2 days)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Results IGn / CG; p (primary outcome marked bold)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>PP</strong> DVT (compression ultrasound) + symptomatic PE + death related to VTE (during treatment + 1 day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.7% / 18%; 0.135</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Proximal DVT (during treatment + 1 day, compression ultrasound)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 / 9; 0.137</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Distal DVT (during treatment + 1 day, compression ultrasound)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 / 14; 0.052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>Symptomatic DVT (during treatment + 1 day)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>VTE-related Death (during treatment + 1 day)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 / 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>PE (during treatment + 1 day)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / 2; 0.545 (during treatment + 1 day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>DVT (compression ultrasound) + symptomatic PE + death related to VTE (during follow-up 90 days±7)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 / 4; 0.7150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>PE (during follow-up 90 days±7)</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 / 0; 0.3157</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Evidenztabelle 84: Kap. 3.2.2 Maligne Erkrankungen (nicht-operative Behandlung)

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
Ambulatory patients  
> 18 years  
Receiving chemotherapy for metastatic or locally advanced lung, gastrointestinal (stomach, colon, or rectum), pancreatic, breast, ovarian, or head and neck cancer  
**Exclusion criteria**  
Adjuvant or neoadjuvant chemotherapy  
Objectively confirmed venous or arterial thromboembolism in the past 3 months  
Antithrombotic treatment for any indication  
Life expectancy of less than 3 months  
Eastern Cooperative Oncology Group score greater than 2  
Active bleeding or bleeding requiring hospitalisation or transfusion or surgical intervention in the past 4 weeks  
Intracranial bleeding in the | Nadroparin for the duration of chemotherapy or up to a maximum of 120 days±10 days (3800 IU anti-Xa once a day, subcutaneous injection)  
**Analysed patients**  
n = 769 (as treated)  
n = 779 (ITT)  
**Drop-outs**  
n = 283 | Placebo  
**Analysed patients**  
n = 381 (as treated)  
n = 381 (ITT)  
**Drop-outs**  
n = 117 | **As treated**  
DVT (during the study treatment plus 10 days; measurement NR)  
1.0% / 2.1%; NR  
PE (during the study treatment plus 10 days)  
0.4% / 0.8%; NR  
**ITT**  
Overall thromboembolic events (during the study treatment plus 10 days)  
2.0% / 3.9%; 0.02  
**Major bleeding** (48 hours after the last injection of the study drug)  
0.7% / 0; 0.18  
**Minor bleeding** (48 hours after the last injection) | High risk of bias  
Incomplete outcome data |
<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>past 6 months High risk of bleeding (international normalised ratio or activated partial thromboplastin time ratio above 1.3, or platelet count lower than $50 \times 10^9 / \text{L}$) Active gastric or duodenal ulcer Cerebral metastasis Severe and uncontrolled hypertension Renal impairment (creatinine concentration &gt; 0.025 mg / mL) Substantial liver insufficiency Known hypersensitivity to heparin and derivates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of the study drug) 7.4% / 7.9%; NR Mortality (end of study treatment) 4.3% / 4.2%; NR Overall SAE (end of study treatment) 15.7% / 17.6%; NR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</td>
<td>Intervention/s</td>
<td>Control</td>
<td>Results IGn / CG; p (primary outcome marked bold)</td>
<td>Risk of bias (listed are only the unclear and/or high risk items)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------------------------------------------------------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------------------------------------</td>
<td>------------------------------------------------</td>
</tr>
<tr>
<td>Haas SK, Freund M, Heigener D, Heilmann L, Kemkes-Matthes B, Tempelhoff GFV, et al. Low-molecular-weight heparin versus placebo for the prevention of venous thromboembolism in metastatic breast cancer or stage III/IV lung cancer. Clinical and Applied Thrombosis/Hemostasis. 2012;18(2):159-65.</td>
<td>Inclusion criteria ≥ 18 years Disseminated metastatic breast carcinoma receiving first- or second-line chemotherapy</td>
<td>Certoparin sodium pre-filled 3-mL multidose pen, injection volume of 0.3 mL containing 3000 IU certoparin, once daily for 6 months</td>
<td>Placebo pre-filled 3-mL multidose pen, injection volume of 0.3 mL containing isotonic saline, once daily for 6 months</td>
<td>PP Overall DVT (during the 6-month treatment, measurement venography and/or ultrasonography) 4.0% / 4.0%; 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Exclusion criteria Inflammatory breast cancer Receiving anthracycline monotherapy or gemcitabine (monotherapy or in combination) Bedridden Previous VTE diagnosis Current heparin or oral anticoagulant therapy Long-term aspirin or other current antiplatelet drugs Active gastrointestinal bleeding Hemorrhagic stroke Hereditary bleeding disorder Thrombocytopenia (platelets &lt; 75 000 / mL) Partial thromboplastin time &gt; 2 times upper limit of normal (ULN) Known hypersensitivity to heparin Severe diabetic retinopathy Creatinine &gt; 2 times ULN Osteoporotic fracture Myocardial infarction in the preceding 6 months Participation in a clinical trial with an experimental drug in the preceding 4 weeks</td>
<td>Analysed patients n = 174 (PP, post baseline thrombosis screening) n = 174 (modified-ITT, started treatment)</td>
<td>Analysed patients n = 178 (PP, post baseline thrombosis screening) n = 177 (modified-ITT, started treatment) Drop-outs n = 0</td>
<td>Symptomatic DVT (during treatment, venography and/or ultrasonography) 1.2% / 2.3%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysed patients n = 174 (PP, post baseline thrombosis screening) n = 174 (modified-ITT, started treatment)</td>
<td></td>
<td>Drop-outs n = 2</td>
<td>Asymptomatic DVT (during treatment, venography and/or ultrasonography) 1.2% / 0.6%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PE (during treatment) 0.6% / 0.6%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mortality (during treatment) 8.6% / 6.7%; NR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Modified-ITT Bleeding events (during treatment) 5.2% / 1.7%; 0.084</td>
<td></td>
</tr>
</tbody>
</table>

Unclear risk of bias Other sources of bias (statistical test not reported)
### Study


<table>
<thead>
<tr>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGN / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inclusion criteria</strong></td>
<td>Certoparin sodium pre-filled 3-mL multidose pen, injection volume of 0.3 mL containing 3000 IU certoparin, once daily for 6 months <strong>Analysed patients</strong> n = 268 (PP, post baseline thrombosis screening) <strong>Drop-outs</strong> n = 5</td>
<td>Placebo pre-filled 3-mL multidose pen, injection volume of 0.3 mL containing isotonic saline, once daily for 6 months <strong>Analysed patients</strong> n = 273 (modified-ITT, started treatment) <strong>Drop-outs</strong> n = 10</td>
<td>PP. Overall DVT (during treatment, venography and/or ultrasonography) 4.5% / 8.3%; 0.075</td>
<td>Unclear risk of bias Other sources of bias (statistical test not reported)</td>
</tr>
<tr>
<td><strong>Exclusion criteria</strong></td>
<td>Small-cell lung carcinoma Brain metastases Hemoptysis of ≥ grade 2 Karnofsky index &lt; 70 Bedridden Previous VTE diagnosis Current heparin or oral anticoagulant therapy Long-term aspirin or other current antiplatelet drugs Active gastrointestinal bleeding Hemorrhagic stroke Hereditary bleeding disorder Thrombocytopenia (platelets &lt; 75 000 / mL) Partial thromboplastin time &gt; 2 times upper limit of normal (ULN) Known hypersensitivity to heparin Severe diabetic retinopathy Creatinine &gt; 2 times ULN Osteoporotic fracture Myocardial infarction in the preceding 6 months Participation in a clinical trial with an experimental drug in the preceding 4 weeks</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Study


<table>
<thead>
<tr>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGN / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Inclusion criteria</strong></td>
<td>Enoxaparin 40 mg / days subcutaneously, 280 days (radiotherapy phase + melphalan-prednisone-lenalidomide treatment phase) <strong>Analysed patients</strong> n = 166 (ITT) <strong>Drop-outs</strong> n = 0</td>
<td>Aspirin 100 mg / days orally, 280 days (radiotherapy phase melphalan-prednisone-lenalidomide treatment phase) <strong>Analysed patients</strong> n = 176 (ITT) <strong>Drop-outs</strong> n = 0</td>
<td>Symptomatic DVT + PE (during treatment, venography and/or ultrasonography) 1.5% / 3.4%; NR</td>
<td>High risk of bias Blinding of participants and personnel Blinding of outcome assessment Selective reporting</td>
</tr>
<tr>
<td><strong>Exclusion criteria</strong></td>
<td>History of DVT within the past 12 month History of arterial thromboembolic events Clear indication or contraindication for antiplatelet or anticoagulant therapy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Newly diagnosed multiple myeloma</strong></td>
<td>Treated with melphalan-prednisone-lenalidomide or high-dose melphalan 200 mg / m² (sub study)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

© 2015 Seite 176

<table>
<thead>
<tr>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
| **Inclusion criteria**
Non-resectable, recurrent or metastatic pancreatic adenocarcinoma
Karnofsky performance status of 60–100 ≥ 18 years

**Exclusion criteria**
Previous gemcitabine-containing treatment
Comorbidities which in the opinion of the investigator would compromise informed consent or compliance
History of other advanced malignancy
Ongoing anticoagulation treatment
Treatment with antiplatelet agents for vascular disease (e.g. aspirin at dose > 75 mg, clopidogrel etc.)
Central venous access devices and inferior vena cava filters
Obvious thromboembolism
On anticoagulation
Thromboembolic event in the previous 6 months
Evaluable disease in baseline CT of thorax / abdomen / pelvis
Incidental imaging evidence of VTE at entry
Obvious contraindication to anticoagulation and adequate liver function
Adequate haematological | Gemcitabine, 12 weeks

**Analysed patients**
n = 62 (modified ITT, received treatment)

**Drop-outs**
n = 1 | Gemcitabine + weight adjusted dalteparin 200 IU / kg once daily subcutaneously for 4 weeks followed by a step-down to 150 IU / kg for a further 8 weeks, extension of prophylaxis left to the discretion of the investigator

**Analysed patients**
n = 59 (modified ITT, received treatment)

**Drop-outs**
n = 1 | **DVT (measurement NR) + PE + all arterial events + all visceral thromboembolic events (during treatment)**
23% / 3%; 0.002

**VTE (100-365 days, measurement NR)**
28% / 12%; 0.039

**Serve Bleeding (during treatment)**
2 / 2; NR

**Non-severe bleeding (during treatment)**
2 / 5; NR

**SAE (during treatment)**
39% / 29%; NR

**Mortality (during treatment)**
11% / 7%; 0.388

**Unclear risk of bias**
Allocation concealment
Blinding of participants and personnel
Blinding of outcome assessment
### Study

**Inclusion criteria / Exclusion criteria**

**Intervention/s**

**Control**

**Results IGn / CG; p (primary outcome marked bold)**

**Risk of bias**

*High risk of bias*

**Blinding of participants and personnel**

**Blinding of outcome assessment**

---

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
- Previous untreated patients with myeloma ≤ 65 years
- Treated with bortezomib, thalidomide, dexamethasone or dexamethasone and dexamethasone (3 cycles à 21 days) ≥ 65 years
- Bortezomib, melphalan, prednisone, and thalidomide followed (9 cycles à 21 days) by continuous therapy with bortezomib and thalidomide (9 cycles à 21 days) or without further continuous treatment
- Treated with thalidomide based regimes
  | **Exclusion criteria**
- Allergy or intolerance to study drugs
- Clear indication or contraindication for a specific antithrombotic or anticoagulant therapy
- Active bleeding or high risk of bleeding
  | IG1: ASA:100 mg / days orally, (duration of anticoagulation therapy: patients ≤ 65 years for the duration of chemotherapy, patients ≥ 65 years for the first 6 cycles of chemotherapy)

  **Analysed patients**
  n = 220 (modified ITT, receiving study drug)

  **Drop-outs**
  n = 4

  | IG2: fixed low-dose warfarin, 1.25 mg / days orally, (duration of anticoagulation therapy: patients ≤ 65 years for the duration of chemotherapy, patients ≥ 65 years for the first 6 cycles of chemotherapy)

  **Analysed patients**
  n = 220 (modified-ITT, receiving study drug)

  **Drop-outs**
  n = 2

  | CG: Enoxaparin, 40 mg / days subcutaneously, (duration of anticoagulation therapy: patients ≤ 65 years for the duration of chemotherapy, patients ≥ 65 years for the first 6 cycles of chemotherapy)

  **Analysed patients**
  n = 219 (modified-ITT, receiving study drug)

  **Drop-outs**
  n = 2

| Symptomatic DVT + PE + arterial thrombosis, acute cardiovascular event + otherwise unexplained death (6 months)
| 6.4% / 8.2% / 5.0% ; 0.544 (IG1 / CG); 0.183 (IG2 / CG)

| DVT (median 24.9 month [18.4 – 32 months])
| 5.5% / 7.7% / 4.6% ; NR

| Symptomatic PE (6 months)
| 1.8% / 1.8% / 0; NR

| Major Bleeding (6 months)
| 1.4% / 0 / 0; 0.083 (IG1 / CG); 1.000 (IG2 / CG)

| Minor bleeding (6 months)
| 2.7% / 0.5% / 1.4% ; 0.316 (IG1 / CG); 0.313 (IG2 / CG)

| Unexplained mortality (median 24.9 month [18.4 – 32 months])
| 1 / 2 / 1; NR

| AE (median 24.9 month [18.4 – 32 months])
| NR / NR / NR; > 0.05

| High risk of bias
| Blinding of participants and personnel
| Blinding of outcome assessment

---

© 2015 AWMF
### Study:

#### Inclusion criteria / Exclusion criteria

**Inclusion criteria**
- ≥ 18 years
- Newly diagnosed WHO Grade 3 or Grade 4 glioma

**Exclusion criteria**
- Acute or chronic DVT
- Evidence of serious hemorrhage within 4 weeks of study entry
- Coagulopathy
- Symptomatic intracranial or intratumoral bleeding
- Acute peptic ulcer disease
- Familial bleeding diathesis
- Requirement for long-term anticoagulants
- Uncontrolled hypertension
- Significant renal failure
- Prior history of documented VTE
- Allergy to anticoagulants
- An expected lifespan of < 6 months and body weight < 40 kg
- Pregnant, of childbearing age

#### Intervention/s
- Dalteparin sodium 5000 IU, subcutaneously once daily for 6 (+ additional 6 months, if desired), median duration of treatment 183 days (30-360 days)

#### Control
- Saline placebo, subcutaneously once daily, for 6 months (+ additional 6 months, if desired), median duration of treatment 157 days (30-360 days)

#### Results IGn / CG; p (primary outcome marked bold)
- Symptomatic DVT (venography or compression ultrasound) + PE (6 month) 9 / 13; 0.29
- DVT (6 month, venography or compression ultrasound) 8 / 10; NR
- PE (6 month) 2 / 4; NR
- Major Bleeding (12 month) 5 / 1; < 0.05
- Mortality (12 month) 45 / 32; 0.56

#### Risk of bias
- Unclear risk of bias
- Other sources of bias (of the 512 patients that were planned to include only 186 were finally included)

---

### Evidenztabelle 85: Kap. 3.2.3 Schlaganfall

#### Study:

#### Inclusion criteria / Exclusion criteria (main characteristic marked bold)

**Inclusion criteria**
- Admitted to hospital within 1 week of an acute stroke
- Immobile

**Exclusion criteria**
- Peripheral vascular disease
- Diabetic or sensory neuropathy
- Graduated compression stockings might cause skin damage
- Stroke due to subarachnoid haemorrhage

#### Intervention/s
- Thigh-length graduated compression stockings, both legs day and night until either the patient was independently mobile around the ward; they were discharged from the recruiting centre; the patient refused to wear them; or the staff became concerned about the patient’s skin.

#### Control
- Avoid graduated compression stockings

#### Results IGn / CG; p (primary outcome marked bold)
- Proximal DVT (30 days, compression duplex ultrasound) 10.0% / 10.5%; > 0.05
- Symptomatic proximal DVT (30 days, compression duplex ultrasound) 2.9% / 3.4%; > 0.05
- Asymptomatic proximal DVT (30 days, compression duplex ultrasound) 7.2% / 7.1%; > 0.05
- Symptomatic DVT (30 days, compression duplex ultrasound) 4.4% / 4.8%; > 0.05
- DVT (30 days, compression duplex ultrasound) 16.3% / 17.7%; > 0.05
- PE (30 days) 1.0% / 1.6%; > 0.05
- Mortality (30 days) 9.7% / 8.7%; > 0.05

#### Risk of bias
- High risk of bias
- Blinding of participants and personnel
- Unclear risk of bias
- Incomplete outcome data
### Study

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
| **CLOTS III**: Effectiveness of intermittent pneumatic compression in reduction of risk of deep vein thrombosis in patients who have had a stroke (CLOTS 3): a multicentre randomised controlled trial. The Lancet. 2013. | **Inclusion criteria**  
Admitted to hospital within 3 days of acute stroke  
Immobile  
Symptomatic proximal DVT (30 days; compression duplex ultrasound)  
Asymptomatic proximal DVT (30 days; compression duplex ultrasound)  
DVT (30 days; compression duplex ultrasound)  
PE (30 days)  
Mortality (30 days) | Intermittent pneumatic compression thigh-length sleeves for a minimum of 30 days from randomisation, or until a second screening compression duplex ultrasound had been done (apply continuously day and night)  
**Exclusion criteria**  
< 16 years  
Subarachnoid haemorrhage  
Contraindications to intermittent pneumatic compression | **Control**  
No intermittent pneumatic compression  
**Analysed patients**  
n = 1438 (ITT)  
**Drop-outs**  
n = 483 | **Results IGn / CG; p (primary outcome marked bold)**  
Proximal DVT (30 days; compression duplex ultrasound)  
8.5% / 12.1%; 0.001  
DVT (30 days; compression duplex ultrasound)  
16.2% / 21.1%; 0.001  
Symptomatic proximal DVT (30 days; compression duplex ultrasound)  
2.7% / 3.4%; 0.269  
Asymptomatic proximal DVT (30 days; compression duplex ultrasound)  
5.8% / 8.7%; 0.003  
DVT (6 month, compression duplex ultrasound)  
16.7% / 21.7%; 0.001  
Symptomatic DVT (6 month, compression duplex ultrasound)  
5.4% / 7.0%; 0.061  
PE (30 days)  
2.0% / 2.4%; 0.453  
PE (6 month)  
2.9% / 3.4%; 0.463  
Mortality (30 days)  
10.8% / 13.1%; 0.057  
Mortality (6 month)  
22.3% / 25.1%; 0.059  
Skin breaks (30 days)  
3.1% / 1.4%; 0.002 | **Risk of bias** (listed are only the unclear and/or high risk items)  
High risk of bias  
Blinding of participants and personnel |
### Study


**Inclusion criteria**
- Hospitalized within 1 week of an acute stroke (ischemic or hemorrhagic)
- Immobile (could not walk independently to the toilet)

**Exclusion criteria**
- Subarachnoid hemorrhage
- Severe peripheral vascular disease
- Diabetic or sensory neuropathy

**Intervention/s**
- Thigh-length graduated compression stockings, both legs day and night until either the patient was independently mobile, they were discharged from hospital; the patient refused to wear them; or the staff became concerned about the patient's skin.

**Control**
- Below-knee graduated compression stockings, both legs day and night until either the patient was independently mobile, they were discharged from hospital; the patient refused to wear them; or the staff became concerned about the patient's skin.

**Results IGn / CG; p**
- Proximal DVT (25-30 days, compression duplex ultrasound) 6.3% / 8.8%; 0.008
- Symptomatic proximal DVT (25-30 days) 3.2% / 4.0%; 0.19
- Asymptomatic proximal DVT (25-30 days, compression duplex ultrasound) 3.2% / 4.8%; 0.02
- Symptomatic DVT (25-30 days) 5.5% / 5.6%; 0.87
- DVT (25-30 days, compression duplex ultrasound) 11.4% / 13.5%; 0.08
- PE (25-30 days or discharge) 1.5% / 1.2%; 0.51
- Mortality (25-30 days or discharge) 11.7% / 11.1%; 0.67
- Skin problems (until hospital discharge) 9.0% / 6.9%; 0.03

**Risk of bias**
- High risk of bias
  - Blinding of participants and personnel
- Unclear risk of bias
  - Blinding of outcome assessment

### Evidenztabelle 86: Kap. 3.3 Intensivmedizin

**Study**

**Inclusion criteria / Exclusion criteria (main characteristic marked bold)**

**Intervention/s**

**Control**

**Results IGn / CG; p**

**Risk of bias**

- listed are only the unclear and/or high risk items

---


**Inclusion criteria**
- ≥ 18 years
- Weight ≥ 45 kg
- Expected to ICU for at least 3 days

**Exclusion criteria**
- Major trauma
- Neurosurgery or orthopedic surgery
- Need for therapeutic anticoagulation
- Heparin administration in the intensive care unit for at least 3 days
- Contraindication to heparin or blood products
- Pregnancy
- Life-support limitation

**Intervention/s**
- Dalteparin 5000 IU, subcutaneous, once daily + placebo injection once daily for the duration of ICU stay

**Control**
- Unfractionated heparin 5000 IU, subcutaneous, twice daily for the duration of ICU stay

**Results IGn / CG; p**

**Risk of bias**

- listed are only the unclear and/or high risk items

---

Evidenztabelle 86: Kap. 3.3 Intensivmedizin

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Dennis M, Sandercock P, Reid J, Graham C, Murray G, Venables G, et al.</strong> Thigh-length versus below-knee stockings for deep venous thrombosis prophylaxis after stroke: A randomized trial. Annals of Internal Medicine. 2010;153(9):553-62. (CLOTS II)</td>
<td><strong>Inclusion criteria</strong> Hospitalized within 1 week of an acute stroke (ischemic or hemorrhagic) Immobile (could not walk independently to the toilet)</td>
<td><strong>Intervention/s</strong> Thigh-length graduated compression stockings, both legs day and night until either the patient was independently mobile, they were discharged from hospital; the patient refused to wear them; or the staff became concerned about the patient’s skin.</td>
<td><strong>Control</strong> Below-knee graduated compression stockings, both legs day and night until either the patient was independently mobile, they were discharged from hospital; the patient refused to wear them; or the staff became concerned about the patient’s skin.</td>
<td><strong>Results IGn / CG; p</strong> Proximal DVT (25-30 days, compression duplex ultrasound) 6.3% / 8.8%; 0.008 Symptomatic proximal DVT (25-30 days) 3.2% / 4.0%; 0.19 Asymptomatic proximal DVT (25-30 days, compression duplex ultrasound) 3.2% / 4.8%; 0.02 Symptomatic DVT (25-30 days) 5.5% / 5.6%; 0.87 DVT (25-30 days, compression duplex ultrasound) 11.4% / 13.5%; 0.08 PE (25-30 days or discharge) 1.5% / 1.2%; 0.51 Mortality (25-30 days or discharge) 11.7% / 11.1%; 0.67 Skin problems (until hospital discharge) 9.0% / 6.9%; 0.03</td>
<td><strong>Risk of bias</strong> High risk of bias Blinding of participants and personnel Unclear risk of bias Blinding of outcome assessment</td>
</tr>
<tr>
<td><strong>Cook D, Meade M, Guyatt G, Walter S, Heels-Ansdell D, Warkentin TE, et al.</strong> Dalteparin versus unfractionated heparin in critically ill patients. New England Journal of Medicine. 2011;364(14):1305-14.</td>
<td><strong>Inclusion criteria</strong> ≥ 18 years Weight ≥ 45 kg Expected to ICU for at least 3 days</td>
<td><strong>Exclusion criteria</strong> Major trauma Neurosurgery or orthopedic surgery Need for therapeutic anticoagulation Heparin administration in the intensive care unit for at least 3 days Contraindication to heparin or blood products Pregnancy Life-support limitation</td>
<td><strong>Intervention/s</strong> Dalteparin 5000 IU, subcutaneous, once daily + placebo injection once daily for the duration of ICU stay</td>
<td><strong>Control</strong> Unfractionated heparin 5000 IU, subcutaneous, twice daily for the duration of ICU stay</td>
<td><strong>Results IGn / CG; p</strong></td>
</tr>
</tbody>
</table>

© 2015 AWMF
**Study** | **Inclusion criteria / Exclusion criteria (main characteristic marked bold)** | **Intervention/s** | **Control** | **Results IGn / CG; p (primary outcome marked bold)** | **Risk of bias (listed are only the unclear and/or high risk items)**
---|---|---|---|---|---
≥ 18 years  
High risk of bleeding on ICU admission (symptomatic bleeding, organic lesions likely to bleed, hemophilic diseases, hemostatic abnormalities, severe anemia due to bleeding or unexplained)  
*Exclusion criteria*  
VTE at screening or a recent DVT  
ICU stay of more than 36 hours or likely to be < 72 hours  
Life-support limitation  
Contraindication for mechanical prophylaxis  
Mechanical prosthetic heart valve | Intermittent pneumatic compression with adapted tubing sets and thigh sleeves + thigh-length compression stockings. Treatment for 6 days  
*Analysed patients*  
n = 204 (exclusion not specified)  
n = 179 (PP, evaluable outcome)  
*Drop-outs*  
n = 72 | Thigh-length compression stockings  
Treatment for 6 days  
*Analysed patients*  
n = 202 (randomized)  
n = 184 (PP, evaluable outcome)  
*Drop-outs*  
n = 69 | PP  
Symptomatic DVT + asymptomatic DVT (compression ultrasonography) + symptomatic, nonfatal PE + death related to PE (day 6)  
5.6% / 9.2%; 0.191  
VTE (day 90, compression ultrasonography)  
7.8% / 9.2%; 0.63  
Asymptomatic distal DVT (day 6, compression ultrasonography)  
3.4% / 6.6%; 0.17  
Asymptomatic proximal DVT (day 6, compression ultrasonography)  
2.2% / 2.2%; 0.975  
*Exclusion not specified / randomized*  
PE (day 6)  
0 / 1; NR  
Symptomatic DVT (day 6)  
0 / 0  
Symptomatic VTE (90 days, compression ultrasonography)  
4 / 1; 0.4  
Bleeding (90 days)  
4.9% / 5.9%; 0.65  
Mortality (90 days)  
34% / 34%; 0.97  
AE (90 days)  
0 / 8; NR | High risk of bias  
Blinding of participants and personnel
Evidenztabelle 87: Kap. 3.4.2 Gynäkologische Eingriffe

<table>
<thead>
<tr>
<th>Study</th>
<th>Inclusion criteria / Exclusion criteria (main characteristic marked bold)</th>
<th>Intervention/s</th>
<th>Control</th>
<th>Results IGn / CG; p (primary outcome marked bold)</th>
<th>Risk of bias (listed are only the unclear and/or high risk items)</th>
</tr>
</thead>
</table>
Gynaecological pelvic surgery  
High-risk factors for DVT, such as: history of DVT / PE, hypercoagulopathy, > 60 years, heart disease, varicose veins  
**Exclusion criteria**  
Thrombophlebitis  
Acute DVT  
Platelet count < 100×10^9 / L or coagulopathy  
Spontaneous bleeding within the past six months, including intracranial haemorrhage or gastrointestinal bleeding  
Congestive heart failure  
Pulmonary oedema  
Leg oedema  
Hematologic disorders  
Leg abnormalities (such as dermatitis, gangrene, or a recent skin transplant)  
Severe atherosclerosis of lower extremity vessels  
Ischemic vascular diseases  
Severe leg deformities | Graduated compression stockings, pre-operatively + intermittent pneumatic compression stockings, intra- and post-operatively, until the patient was ambulated  
**Analysed patients** n = 52 (unclear)  
**Drop-outs** NR | Graduated compression stockings, pre-operatively  
**Analysed patients** n = 56 (unclear)  
**Drop-outs** NR | DVT (measurement time point NR, color Doppler flow imaging)  
4.8% / 12.5%; 0.046  
PE (measurement time point NR)  
1 / 1; 0.958 | **High risk of bias**  
Blinding of participants and personnel  
Blinding of outcome assessment  
**Unclear risk of bias**  
Allocation concealment  
Incomplete outcome data |
5 Anhang

Erklärungen der Autoren über Verbindungen zu Industrieunternehmen (Darlegung potenzieller Interessenkonflikte)

<table>
<thead>
<tr>
<th>Folgende Autoren erklären, dass keine Verbindungen bzw. finanziellen Interessenskonflikte mit möglicherweise an den Leitlinieninhalten interessierten Dritten vorliegen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. H.-H. Abholz, Prof. Dr. F. Booth, Dr. S. Eggeling, Prof. Dr. A. Encke, E. Jacobs, Prof. Dr. I. Kopp, Prof. Dr. P. Kujath, Dipl. Ges. Ök. T. Mathes, Prof, Prof. Dr. U. Nowak-Göttl, Prof. Dr. U. Rolle, Prof. Dr. L. Swoboda, Dr. T. von Hausen, PD Dr. M. Weigl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Folgende Autoren erklären Berater-, Gutachter-, Vortragstätigkeit, Tätigkeit in einem wissenschaftlichen Beirat oder Teilnahme an Studien für Industrieunternehmen oder erhielten Zuwendungen für die Durchführung von Forschungsprojekten von Industrieunternehmen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. C. Bode (Firmen, die Antikoagulazien herstellen), Prof. Dr. H. Diener (Astra-Zeneca, GSK, Pfizer, Lilly, Böhringer, Bayer Vital, Jannsssen-Cilag, 3M Medica, Novartis, Allergan, Almirall, Schaper &amp; Brügger, Johnson &amp; Johnson, Pierre Fabre, Weber &amp; Weber, BMS, Grünenthal, Pharmacia, La Roche), Dr. M. Eiermann (Grünenthal – nur EbM Kurs), Dr. H. Gerlach (Boehringer Ingelheim, Bayer Vital, LEO, Sanofi, Bayer Vital und GSK), Prof. Dr. A. Greinacher (Aspen, Bayer Pharma, Bayer-Stiftung, Bayer Vital, Boehringer Ingelheim, Bristol Myers Squibb, Chromotec, Daiichi Sankyo, Diagnostica Stago, Gore Inc, Instrumentation Laboratory, Macopharma, Mitsubishi Pharma, MSD Sharp/Essence, Prosena/The Biomarin, Sourin Group Deutschland), Dr. W. Gogarten (Bayer, Boehringer-Ingelheim, Pfizer, LEO GmbH), Dr. S. Haas (Bayer Healthcare, Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Pfizer, Sanofi), Prof. Dr. V. Hach-Wunderle (Bayer GmbH, Boehringer GmbH, TULIPA-Register, GSK, LEO GmbH, Daiichi Sankyo, Medi, Jobst, Sanofi, Pfizer, Hartmann, UCB, BMS), Prof. Dr. U. Kneser (Mediwound GmbH), Prof. Dr. R. Krauspe (Bayer), Dr. C. M. Krüger (PWG-Seminare, Fresenius Biotech, W.O.M. – World of Medicine AG, Bayer/Schering, Kamerapatient, Patentantrag Co2-Kardiocirurgisches Messinstrument), Prof. Dr. J. Kussmann (Ethicon), Prof. Dr. E. Muhl (KCI, Braun), Dr. R. Pauschert (Boehringer Ingelheim, Bayer, Pfizer), PD Dr. Ch. Protzel (Pfizer, GSK, Berlin Chemie, Novartis), Prof. Dr. E. Rabe (Sigvaris, Eurocom, Medi, Servier Bayer Vital), Prof. Dr. F.-C. Rieß (Medtronic, Aesculap), Dr. H. Riess (Bayer Vital, Boehringer Ingelheim, Bristol-Myers Squibb, Daiichi Sankyo, GlaxoSmithKline, LEO Pharma, Novartis Pharma, Pfizer, Sanofi-Aventis), Prof. Dr. S. Schellong (Boehringer Ingelheim, Daiichi Sankyo, Bayer Healthcare, Sanofi Aventis, Glaxo Smith Kline), Prof. Dr. K. Schwertfeger (Nycomed-Pharma), Prof. Dr. M. Spannagl (Bayer, Boehringer Ingelheim, Pfizer, BMS, Sanofi, Novartis, LEO-Pharma, Abbott, Mitsubishi Pharma, Baxter, CSL Behring), Prof. Dr. E. Solomayer (Roche, Novartis, Genomic Health, Amgen, Pfizer, Celgene), Prof. Dr. T. Schmitz-Rixen (TV-A-Dialysehund-Produkt, GORE-Heparin beschichtete Gefäßprothesen, Commassoft-Wissensmanagement), Prof. Dr. K. M. Stürmer (Vers. Kammer Bayern), RA Prof. Dr. K. Ulsenheimer (u.a. UCB, Sanofi – nur jurist. Themen), Prof. Dr. C. Waydhas (Bayer Vital GmbH, Med GmbH)</td>
</tr>
</tbody>
</table>

Die Erklärungen erfolgten anhand des Formblatts der AWMF (Stand 08.02.2010). Die unterschriebenen Formblätter liegen dem Leitliniensekretariat vor. Die Interessenkonflikte sind unter Verwendung der AWMF-Mustertabelle im Detail im Leitlinienreport dargelegt (http://www.awmf.org/leitlinien/detail/ll/003-001.html).

Die AWMF erfasst und publiziert die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt - dennoch kann die AWMF für die Richtigkeit des Inhalts keine Verantwortung übernehmen. **Insbesondere für Dosierungsangaben sind stets die Angaben der Hersteller zu beachten!**

© AWMF Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e.V.

Autorisiert für elektronische Publikation: AWMF online

Aktuelle PDF-Datei erzeugt: 10.11.2015
6 Literatur


Evidence-Based Clinical Practice Guidelines. Chest 2012;141(2 Suppl):7S-47S


http://handbook.cochrane.org/chapter_8/table_8_5_a_the_cochrane_collaborations_tool_for_assessing.htm


61. Flordal PA, Berggqvist D, Burmark US, et al. Risk factors for major thromboembolism and bleeding tendency after elective general surgical operations. The Fragmin


100. Abdollahi M, Cushman M, Rosendaal FR. Obesity: risk of venous thrombosis and the


113. Hoibraaten E, Qvigstad E, Arnesen H, et al. Increased risk of recurrent venous


40.


215. Bateman BT, Mhyre JM, Ehrenfeld J, et al. The risk and outcomes of epidural hematomas after perioperative and obstetric epidural catheterization: a report from...


309. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin (DGAI). Leitlinie Rückenmarksnähe Regionalanästhesien und Thromboembolieprophylaxe/Antikoagulation. 2003;2009(March 16th) http://www.uni-
duesseldorf.de/AWMF/II/001-005.htm, DOI: AWMF-Leitlinie 001-005.


359667745.

363065569.

http://dx.doi.org/10.1056/NEJMoa1111096.


428. Franks AL, Atrash HK, Lawson HW, et al. Obstetrical pulmonary embolism mortality,


593. Rader CP, Kramer C, König A, et al. Vergleich zwischen niedermolekularen und unfraktionierten Heparinen (PTT gesteuert) in der Thromboseprophylaxe bei...


